Skip to main content
Log in

Internal Surface Coating of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol Using a PdZn/TiO2 Catalyst. The Effect of the Catalyst’s Activation Conditions on Its Catalytic Properties

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Finely divided polymer-stabilized PdZn bimetallic nanoclusters are prepared by the polyol method. TiO2 matrix-impregnated nanoclusters coated on the inner surface of a capillary microreactor are used as catalysts for the selective hydrogenation of 2-methyl-3-butyn-2-ol. The effect of the activation conditions (duration, temperature, and gas medium composition) on the physicochemical and catalytic properties of the coatings is studied. It is shown that their catalytic activities decrease and the reaction’s selectivity increases with an increase in the reaction time and the time of hydrogen reduction at 573 K. The highest selectivity (96.5% at a conversion rate of 99%) is reached on the coatings reduced with hydrogen for 6 h. The coatings remain highly active and stable for 1 month in the continuous flow mode of the reaction. Kinetic simulation showed that a high selectivity level is ensured by a decrease in the rate constants of hydrogenation of 2-methyl-3-buten-2-ol and the ratio of the alkene/alkyne adsorption constants after reductive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonrath, W., Medlock, J., Schutz, J., Wustenberg, B., and Netscher, T., Hydrogenation: Overview, Karamé, I., Ed., Rijeka: In Tech, 2012, p.69.

  2. Soldatenkov, A.T., Kolyadina, N.M., Tuan An’, L., and Buyanov V.N., Osnovy organicheskoi khimii pishchevykh, kormovykh i biologicheski aktivnykh dobavok, Ucheb. Posobie (Fundamentals of Organic Chemistry of Food, Feed, and Biologically Active Additives. Textbook.), Moscow: Khimia, 2006.

    Google Scholar 

  3. Lindlar, H. and Dubuis, R., Org. Synth., 1966, vol. 46, p.89.

    Article  CAS  Google Scholar 

  4. Armbruster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., and Schlogl, R., J. Am. Chem. Soc., 2010, vol. 132, p. 14745.

    Article  CAS  PubMed  Google Scholar 

  5. Wowsnick, G., Teschner, D., Armbrüster, M., Kasatkin, I., Girgsdies, F., Grin, Y., Schlögl, R., and Behrens, M., J. Catal., 309, 2014, vol. 309, p.221.

    Article  CAS  Google Scholar 

  6. Zhou, H., Yang, X., Li, L., Liu, X., Huang, Y., Pan, X., Wang, A., Li, J., and Zhang, T., ACS Catal., 2016, vol. 6, p. 1054.

    Article  CAS  Google Scholar 

  7. Rebrov, E.V., Berenguer-Murcia, A., Skelton, H.E., Johnson, B.F.G., Wheatley, A.E.H., and Schouten, J.C., Lab Chip, 2009, vol. 9, p.503.

    Article  CAS  Google Scholar 

  8. Okhlopkova, L.B., Matus, E.M., Prosvirin, I.P., Kerzhentsev, M. A., and Ismagilov Z. R., J. Nanopart. Res., 2015, vol. 17, p.475.

    Article  CAS  Google Scholar 

  9. Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Baeva, G.N., Bukhtiyarov, A.V., Prosvirin, I.P., Bukhtiyarov, V.I., and Stakheev, A.Yu., Kinet. Catal., 2017, vol. 58, no. 4, p.471.

    Article  CAS  Google Scholar 

  10. Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Rassolov, A.V., Baeva, G.N., and Stakheev, A.Yu., Kinet. Catal., 2017, vol. 58, no. 4, p.480.

    Article  CAS  Google Scholar 

  11. Okhlopkova, L.B., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2016, vol. 54, no. 4, p.497.

    Article  CAS  Google Scholar 

  12. Dominguez-Dominguez, S., Berenguer-Murcia, A., Cazorla-Amoros, D., and Linares-Solano, A., J. Catal., 2006, vol. 243, p.74.

    Article  CAS  Google Scholar 

  13. Haverkamp, V., Hessel, V., Lowe, H., Menges, G., Warnier, M.J.F., Rebrov, E.V., de Croon, M.H.J.M., Schouten, J.C., and Liauw, M.A., Chem. Eng. Technol., 2006, vol. 29, no. 9, p. 1015.

    Article  CAS  Google Scholar 

  14. Bradley, J.S., Clusters and Colloids, Weinheim: VCH, 1994, p.465.

    Google Scholar 

  15. Okhlopkova, L.B., Kerzhentsev, M.A., Tuzikov, F.V., Larichev, Y.V., and Ismagilov, Z.R., J. Nanopart. Res., 2012, vol. 14, p. 1088.

    Article  CAS  Google Scholar 

  16. Chisholm, D.J., Heat Mass Transfer, 1967, vol. 10, p. 1767.

    Article  CAS  Google Scholar 

  17. Semagina, N., Grasemann, M., Xanthopoulos, Renken, A., and Kiwi-Minsker, L., J. Catal., 2007, vol. 251. p.213.

    Article  CAS  Google Scholar 

  18. Nikoshvili, L.Zh., Makarova, A.S., Lyubimova, N.A., Bykov, A.V., Sidorov, A.I., Tyamina, I.Yu., Matveeva, V.G., and Sulman, E.M., Catal. Today, 2015, vol. 256, p.231.

    Article  CAS  Google Scholar 

  19. Stucky, G.D., Zhao, D., Yang, P., Lukens, W., Melosh, N., and Chmelka, B.F., Stud. Surf. Sci. Catal., 1998, vol. 117, p.1.

    Article  CAS  Google Scholar 

  20. Protasova, L.N., Rebrov, E.V., Glazneva, T.S., Berenguer-Murcia, A., Ismagilov, Z.R., and Schouten, J.C., J. Catal., 2010, vol. 271, p.161.

    Article  CAS  Google Scholar 

  21. Glazneva, T.S., Rebrov, E.V., Schouten, J.C., Paukshtis, E.A., and Ismagilov, Z.R., Thin Solid Films, 2007, vol. 515, p. 6391.

    Article  CAS  Google Scholar 

  22. Ota, A., Armbruster, M., Behrens, M., Rosenthal, D., Friedrich, M., Kasatkin, I., Girgsdies, F., Zhang, W., Wagner, R., and Schlogl, R., J. Phys. Chem. C, 2011, vol. 115, p. 1368.

    Article  CAS  Google Scholar 

  23. Armbruster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., and Schlogl, R., J. Am. Chem. Soc., 2010, vol. 132, p. 14745.

    Article  CAS  PubMed  Google Scholar 

  24. Penner, S., Jenewein, B., Gabasch, H., Klotzer, B., Wang, D., Knop-Gerick,e A., Schlogl, R., and Hayek, K., J. Catal., 2006, vol. 241, p.14.

    Article  CAS  Google Scholar 

  25. Semagina, N., Renken, A., Laub, D., and Kiwi-Minsker, L., J. Catal., 2007, vol. 246, p.308.

    Article  CAS  Google Scholar 

  26. Wowsnick, G., Teschner, D., Armbruster, M., Kasatkin, I., Girgsdies, F., Grin, Y., Schlogl, R., and Behrens, M., J. Catal., 2014, vol. 309, p.221.

    Article  CAS  Google Scholar 

  27. Singh, U. K. and Vannice. M.A., J. Catal., 2000, vol. 191, p.165.

    Article  CAS  Google Scholar 

  28. Bond, G.C., Metal-Catalysed Reactions of Hydrocarbons, N.Y.: Springer, 2005.

    Google Scholar 

  29. Rebrov, E.V., Klinger, E.A., Berenguer-Murcia, A., Sulman, E.M., and Schouten, J.C., Org. Process. Res. Dev., 2009, vol. 13, p.991.

    Article  CAS  Google Scholar 

  30. Cherkasov, N., Ibhadon, A.O., McCue, A.J., Anderson, J.A., and Johnston, S.K., Appl. Catal., A., 2015, vol. 497, p. 22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Okhlopkova.

Additional information

Original Russian Text © L.B. Okhlopkova, M.A. Kerzhentsev, Z.R. Ismagilov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 3, pp. 355–364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhlopkova, L.B., Kerzhentsev, M.A. & Ismagilov, Z.R. Internal Surface Coating of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol Using a PdZn/TiO2 Catalyst. The Effect of the Catalyst’s Activation Conditions on Its Catalytic Properties. Kinet Catal 59, 347–356 (2018). https://doi.org/10.1134/S0023158418030163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418030163

Keywords

Navigation