Skip to main content
Log in

Kinetic Study and Optimization of Catalytic Peroxide Delignification of Aspen Wood

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

It is established that the main regularities of the peroxide delignification of aspen wood in the temperature range of 70–100°С in the presence of dissolved (H2SO4) and solid (TiO2) catalysts are similar. With an increase of the temperature, the concentration of hydrogen peroxide and acetic acid, and the hydromodule (HM) values, as well as the duration of the process and the content of cellulose in the cellulose products, increase, while the content of the residual lignin decreases. Simultaneously, the total yield of cellulose products decreases independently of the nature of the catalyst. Delignification processes are satisfactory described by the first-order equation. A sufficiently high activation energy (88 kJ/mol in the presence of H2SO4 and 75 kJ/mol in the presence of TiO2) indicates the absence of significant external diffusion constraints in the selected conditions. The optimal conditions of obtaining cellulose products with a low content of residual lignin from aspen wood are found by the calculation methods. It is shown by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) that the structure of cellulose products obtained corresponds to the structure of industrial microcrystalline cellulose. In the optimal conditions, a high-quality cellulose product can be obtained in mild conditions (the temperature is 100°С, atmospheric pressure) by using a safer and technological TiO2 catalyst instead of a sulfuric acid catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajpai, P., Pulp and Paper Industry. Energy Conversion, Elsevier, 2016, p.260.

    Google Scholar 

  2. Johan, G. and Fogelbolm, C.J., Papermaking Sciences and Technology, 6A Chemical Pulping, Finland: Tappi Press, 2000, p.41.

    Google Scholar 

  3. Geles, I.S., Drevesnoe syr’e, Strategicheskaya osnova i rezerv tsivilizatsii (Wood Raw Materials: The Strategic Basis and Reserve of Civilization), Petrazavodsk: Karel’skii Nauchnyi Tsentr RAN, 2007, p.499.

    Google Scholar 

  4. Nepenin, Yu.N., Tekhnologiya tsellyulozy. Proizvodstvo sul’fatnoi tsellyulozy (Technology of cellulose. Production of sulphate pulp), Moscow: Lesnaya Prom-st’, 1990.

    Google Scholar 

  5. Smook, G.A., Handbook for Pulp and Paper Technologists, Vancouver (Canada): Angus Wilde Publications, 2002, p.447.

    Google Scholar 

  6. Sixta, H., Potthast, A., and Krotschek, A.W., Handbook of Pulping, Weinheim: Wiley-VCH, 2006, vol. 1, p.109.

    Article  CAS  Google Scholar 

  7. Pohjanvesi, S., Saan, K., Poopius-Levlin, K., and Sundquist, J., 8th Int. Symp. Wood and Pulp. Chem., Helsinki, 1995, vol. 2, p.154.

    Google Scholar 

  8. Jahan, M.S., Chowdhury, D.A.N., and Islam, M.K., Cell. Chem. Technol., 2007, vol. 41, p.137.

    CAS  Google Scholar 

  9. Baeza, J., Pedreros, A., and Urizar, S., Cell. Chem. Technol., 1999, vol. 33, p.81.

    CAS  Google Scholar 

  10. Oliet, M., Rodrigues, F., Santos, A., and Gilarranz, M., Ind. Eng. Chem. Res., 2000, vol. 39, no. 1, p.34.

    Article  CAS  Google Scholar 

  11. Evtuguin, D.V., Deineko, I.P., and Pascoal, N.C., Cell. Chem. Technol., 1999, vol. 33, p.103.

    CAS  Google Scholar 

  12. Leh, C.P., Wanrosli, W.D., Zainuddin, Z., and Tanaka, R., Ind. Crop. Prod., 2008, vol. 28, p.260.

    Article  CAS  Google Scholar 

  13. Suchy, M. and Argyropoulos, D., TAPPI Pulping Process and Product Quality Conference, Boston (USA), 2000, p.384.

    Google Scholar 

  14. Oxidative Delignification Chemistry: Fundamentals and Catalysis. ACS symposium series, Argyropoulos, D.S., Ed., Washington: Oxford University, 2001.

  15. Tranzil, U., Mohammad, T., and Mohammad, A., J. Chem. Soc. Pakistan, 2001, vol. 23, p.210.

    Google Scholar 

  16. Kuznetsov, B.N., Kuznetsova, S.A., Yatsenkova, O.V., and Danilov, V.G., Poluchenie tsellyulozy kataliticheskoi delignifikatsiei drevesiny peroksidom vodoroda (Production of cellulose by catalytic delignification of wood with hydrogen peroxide), Krasnoyarsk: Sibirskii federal’nyi universitet, 2014.

    Google Scholar 

  17. Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., Kozlov, I.A., Taraban’ko, V.E., and Ivanchenko, N.M., Catal. Today, 2002, vol. 75, p.211.

    Article  CAS  Google Scholar 

  18. Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., and Yatsenkova, O.V., Tsellyuloza. Bumaga. Karton, 2007, no. 12, p.27.

    Google Scholar 

  19. Kuznetsov, B.N., Taraban’ko, V.E., and Kuznetsova, S.A., Kinet. Katal., 2008, vol. 49, no. 4, p.541.

    Article  CAS  Google Scholar 

  20. Hu, F., Jang, S., and Ragauskas, A., Bioresource Technol., 2012, vol. 117, p.7.

    Article  CAS  Google Scholar 

  21. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Djakovitch, L., and Pinel, C., React. Kinet. Mech. Catal., 2013, vol. 110, p.271.

    Article  CAS  Google Scholar 

  22. Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., and Yatsenkova, O.V., Reac. Kinet. Catal. Lett., 2008, vol. 94, p.311.

    Article  CAS  Google Scholar 

  23. Sjoostroom, E. and Alern, R., Analytical Methods in Wood Chemistry. Pulping and Papermaking, Berlin: Springer, 1999.

    Book  Google Scholar 

  24. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., and Jonson, D.K., Biotechnol. Biofuels, 2010, vol. 3, p.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montgomery, D.C., Runger, G.C., and Hubele, N.F., Engineering Statistics, 5th ed., Wiley, 2011, p.546.

    Google Scholar 

  26. Hinterstoisser, B. and Salmen, L., Cellulose, 1999, vol. 6, no. 3, p.251.

    Article  CAS  Google Scholar 

  27. Fan, M., Dai, D., and Huang, B., Fourier Transform–Materials Analysis, Salih, R., Ed., 2012, p.260.

  28. Thakur, V.K. and Thakur, M.K., Handbook of Sustainable Polymers: Structure and Chemistry, Taylor & Francis Group LLC, 2016, p.923.

    Book  Google Scholar 

  29. Ma, R., Guo, M., and Zhang, X., ChemSusChem, 2014, vol. 7, p.412.

    Article  CAS  PubMed  Google Scholar 

  30. The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, Triantafyllidis, K., Lappas, A., Stocker, M., Eds., Elsevier, 2013, p.594.

  31. Bian, J., Peng, F., Xu, F., Sun, R-C., and Kennedy, J.F., Carbohydr. Res., 2010, vol. 80, p.753.

    Article  CAS  Google Scholar 

  32. Belmokaddem, F.Z., Pinel, C., Huber, P., Petit-Conil, M., and Perez, D.S., Carbohydr. Res., 2011, vol. 346, p. 2896.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kuznetsov.

Additional information

Original Russian Text © B.N. Kuznetsov, N.V. Chesnokov, N.V. Garyntseva, I.G. Sudakova, A.V. Pestunov, L. D’yakovich, K. Pinel’, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 1, pp. 58–68.

This paper is based on materials presented at the X International Conference “Mechanisms of Catalytic Reactions” (October 2–6, 2016, Svetlogorsk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Chesnokov, N.V., Garyntseva, N.V. et al. Kinetic Study and Optimization of Catalytic Peroxide Delignification of Aspen Wood. Kinet Catal 59, 48–57 (2018). https://doi.org/10.1134/S0023158418010068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418010068

Keywords

Navigation