Skip to main content
Log in

Ethylene production by the oxidative condensation of methane in the presence of MnMW/SiO2 catalysts (M = Na, K, and Rb)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The samples of MnMW/SiO2 (M = Na, K, and Rb) were synthesized using various synthesis methods under varied heat treatment conditions and their physicochemical properties and activity in the reaction of the oxidative condensation of methane (OCM) were studied for the development of an effective catalyst for the resource-saving process of natural gas conversion into ethylene. It was found that the preparation method exerts an effect on the textural characteristics of the samples and the reducing properties of the cations of manganese and tungsten. It was determined that the composition of a W-containing phase depends on the alkali metal, and a ratio between the polymorphous modifications of SiO2 is controlled by the method of synthesis and the conditions of catalyst heat treatment. It was established that the yield of C2 hydrocarbons in the OCM reaction increased with the use of incipient wetness impregnation instead of the method of mixing with a suspension for catalyst preparation and with an increase in the catalyst heat treatment temperature from 700 to 1000°C. The optimum composition of the catalyst and the condition of its synthesis were found: 2Mn0.8Na3W/SiO2 obtained by the impregnation method and calcined at 1000°C ensured the yield of target products of ~20% with a CH4 conversion of ~35% at a reaction temperature of 850°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Men'shikov, V.A. and Sinev, M.Yu., Katal. Prom–sti., 2005, vol. 1, p. 25.

    Google Scholar 

  2. Bortolozzi, J.P., Banus, E.D., Courtalon, N.L., Ulla, M.A., Milt, V.G., and Miro, E.E., Catal. Today, 2016, vol. 273, p. 252.

    Article  CAS  Google Scholar 

  3. Gavrilenko, V., Plastik, 2014, vol. 137, no. 8, p. 48.

    Google Scholar 

  4. Masiran, N., Vo, D.-V.N., Salam, Md.A., and Abdullah, B., Procedia Eng., 2016, vol. 148, p. 1289.

    Article  CAS  Google Scholar 

  5. Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: Krasand, 2011.

    Google Scholar 

  6. Treger, Yu.A. and Rozanov, V.N., Rev. J. Chem., 2016, vol. 6, no. 1, p. 83.

    Article  CAS  Google Scholar 

  7. Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Ross. Khim. Zh., 2008, vol. 52, no. 4, p. 22.

    CAS  Google Scholar 

  8. Karakaya, C. and Kee, R.J., Prog. Energy. Combust. Sci., 2016, vol. 55, p. 60.

    Article  Google Scholar 

  9. Kondratenko, E.V., Schlü ter, M., Baerns, M., Linkea, D., and Holena, M., Catal. Sci. Technol., 2015, vol. 5, p. 1668.

    Article  CAS  Google Scholar 

  10. Zavyalova, U., Holeň a, M., Schlö gl, R., and Baerns, M., ChemCatChem, 2011, vol. 3, p. 1935.

    Article  CAS  Google Scholar 

  11. Arndt, S., Otremba, T., Simon, U., Yildiz, M., Schubert, H., and Schomacker, R., Appl. Catal., A, 2012, vol. 425-426, p. 53.

    Article  CAS  Google Scholar 

  12. Galadima, A. and Muraza, O., J. Ind. Eng. Chem., 2016, vol. 37, p. 1.

    Article  CAS  Google Scholar 

  13. Ismagilov, I.Z., Matus, E.V., Kerzhentsev, M.A., Prosvirin, I.P., Navarro, R.M., Fierro, J.L.G., Gerritsen, G., Abbenhuis, E., and Ismagilov, Z.R., Eurasian Chem.-Technol. J., 2015, vol. 17, p. 105.

    Article  Google Scholar 

  14. Ismagilov, I.Z., Matus, E.V., Vasil’ev, S.D., Kuznetsov, V.V., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2015, vol. 56, no. 4, p. 456.

    Article  CAS  Google Scholar 

  15. Ivanov, D.V., Isupova, L.A., Gerasimov, E.Yu., Dovlitova, L.S., Glazneva, T.S., and Prosvirin, I.P., Appl. Catal., A, 2014, vol. 485, p. 10.

    Article  CAS  Google Scholar 

  16. Alexiadis, V.I., Chaar, M., van Veen, A., Muhler, M., Thybaut, J.W., and Marin, G.B., Appl. Catal., B, 2016, vol. 199, p. 252.

    Article  CAS  Google Scholar 

  17. Koirala, R., Buchel, R., Pratsinis, S.E., and Baiker, A., Appl. Catal., A, 2014, vol. 484, p. 97.

    Article  CAS  Google Scholar 

  18. Elkins, T.W. and Hagelin-Weaver, H.E., Appl. Catal., A, 2015, vol. 497, p. 96.

    Article  CAS  Google Scholar 

  19. Hiyoshi, N. and Ikeda, T., Fuel Process. Technol., 2015, vol. 133, p. 29.

    Article  CAS  Google Scholar 

  20. Gordienko, Y., Usmanov, T., Bychkov, V., Lomonosov, V., Fattakhova, Z., Tulenin, Y., Shashkin, D., and Sinev, M., Catal. Today, 2016, vol. 278, p. 127.

    Article  CAS  Google Scholar 

  21. Palermo, A., Vazquez, J., Lee, A., Tikhov, M., and Lambertz, R., J. Catal., 1998, vol. 177, p. 259.

    Article  CAS  Google Scholar 

  22. Yildiz, M., Simon, U., Otremba, T., Aksu, Y., Kailasam, K., Thomas, A., Schomäcker, R., and Arndt, S., Catal. Today, 2014, vol. 228, p. 5.

    Article  CAS  Google Scholar 

  23. Hou, S., Cao, Y., Xiong, W., Liu, H., and Kou, Y., Ind. Eng. Chem. Res., 2006, vol. 45, p. 7077.

    Article  CAS  Google Scholar 

  24. Jiang, Z., Gong, H., and Li, S., Stud. Surf. Sci. Catal., 1997, vol. 112, p. 481.

    Article  CAS  Google Scholar 

  25. Kou, Y., Zhang, B., Niu, J., Li, S., Wang, H., Tanaka, T., and Yoshida, S., J. Catal., 1998, vol. 173, p. 399.

    Article  CAS  Google Scholar 

  26. Jiang, Z., Yu, C., Fang, X., Li, S., and Wang, H., J. Phys. Chem., 1993, vol. 97, p. 12870.

    Article  CAS  Google Scholar 

  27. Wu, J. and Li, S., J. Phys. Chem., 1995, vol. 99, p. 4566.

    Article  CAS  Google Scholar 

  28. Ji, S., Xiao, T., Li, S., Xu, C., Hou, R., and Coleman, K., J. Catal., 2003, vol. 220, p. 47.

    Article  CAS  Google Scholar 

  29. Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Appl. Catal., A, 2011, vol. 406, p. 1.

    Article  CAS  Google Scholar 

  30. Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol’tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., Dokl. Phys. Chem., 2008, vol. 419, part 2, p. 73.

    Article  CAS  Google Scholar 

  31. Wang, J., Chou, L., Zhang, B., Song, H., Zhao, J., Yang, J., and Li, S., J. Mol. Catal. A: Chem., 2006, vol. 245, p. 272.

    Article  CAS  Google Scholar 

  32. Godini, H.R., Gili, A., Görke, O., Arndt, S., Simon, U., Thomas, A., Schomä cker, R., and Wozny, G., Catal. Today, 2014, vol. 236, p. 12.

    Article  CAS  Google Scholar 

  33. Nipan, G.D., Inorg. Mater., 2014, vol. 50, no. 10, p. 1012.

    Article  CAS  Google Scholar 

  34. Ismagilov, I.Z., Matus, E.V., Nefedova, D.V., Kuznetsov, V.V., Yashnik, S.A., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Katal., 2015, vol. 56, no. 3, p. 397.

    Article  Google Scholar 

  35. Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, p. 129.

    Article  CAS  Google Scholar 

  36. Bobkova, N.M., Fizicheskaya khimiya silikatov i tugoplavkikh soedinenii (Physical Chemistry of Silicates and Refractory Compounds), Minsk: Vysheishaya Shkola, 1984.

    Google Scholar 

  37. Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidation Reactions of Methane), Moscow: Nauka, 1998.

    Google Scholar 

  38. Vasil'eva, N.A. and Buyanov, R.A., Obz. Zh. Khim., 2011, vol. 1, no. 4, p. 334.

    Google Scholar 

  39. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Gerashchenko, M.V., Dedov, A.G., and Moiseev, I.I., Russ. J. Inorg. Chem., 2013, vol. 58, p. 887.

    Article  CAS  Google Scholar 

  40. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Larina, T.V., Prosvirin, I.P., Navarro, R.M., Fierro, J.L.G., Gerritsen, G., Abbenhuis, H.C.L., and Ismagilov, Z.R., Eurasian Chem. Technol. J., 2016, vol. 18, no. 2, p. 93.

    Article  Google Scholar 

  41. Fleischer, V., Steuer, R., Parishan, S., and Schomäcker, R., J. Catal., 2016, vol. 341, p. 91.

    Article  CAS  Google Scholar 

  42. Jeon, W., Lee, J.Y., Lee, M., Choi, J.-W., Ha, J.-M., Suh, D.J., and Kim, I.W., Appl. Catal., A, 2013, vols. 464–465, p. 68.

    Article  Google Scholar 

  43. Malekzadeh, A., Dalai, A.K., Khodadadi, A., and Mortazavi, Y., Catal. Commun., 2008, vol. 9, p. 960.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Matus.

Additional information

Original Russian Text © I.Z. Ismagilov, E.V. Matus, V.S. Popkova, V.V. Kuznetsov, V.A. Ushakov, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 5, pp. 634–641.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagilov, I.Z., Matus, E.V., Popkova, V.S. et al. Ethylene production by the oxidative condensation of methane in the presence of MnMW/SiO2 catalysts (M = Na, K, and Rb). Kinet Catal 58, 622–629 (2017). https://doi.org/10.1134/S0023158417050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417050068

Keywords

Navigation