Skip to main content
Log in

Oxidative condensation of methane in the presence of modified MnNaW/SiO2 catalysts

  • “Catalysis: From Science to Industry,” III International School-Conference for Young Scientists (Tomsk, October 26–30, 2014)
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effects of cationic (Ce, Zr, and La) and anionic (S, P, and Cl) admixtures on the activity and physicochemical properties of MnNaW/SiO2 were studied in order to optimize the composition of a catalyst for the oxidative condensation of methane (OCM). It was found that OCM process characteristics can be regulated by varying the type (Ce, Zr, La, S, P, and Cl) and concentration (0.5–5 wt %) of a modifying admixture. For the modified MnNaW/SiO2 catalysts, the yield of the target reaction products increased in the following order of modifying admixtures: S < Zr < P < Ce < La < Cl. The addition of lanthanum, cerium, or phosphorus admixtures insignificantly affected the activity of the MnNaW/SiO2 catalyst, whereas the introduction of sulfur or zirconium led to a decrease in the yield of C2 hydrocarbons. Modification with chlorine improved process characteristics and shifted a maximum yield of C2 hydrocarbons to the low-temperature region. It was established that the introduction of lanthanum considerably improved the stability of catalyst operation. The catalyst composition 2Mn-1.6Na-3.1W-2La/SiO2 was developed to afford a 22% yield of target C2 hydrocarbons at a 54% conversion of methane after a 24-h reaction performed under optimum conditions (reaction temperature, 800°C; reaction mixture flow rate, 117 mL min−1g −1Cat and O2/CH4 molar ratio, 0.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Reforming of Natural Gas), Moscow: KRASAND, 2011.

    Google Scholar 

  2. Ismagilov, Z.R., Matus, E.V., Kerzhentsev, M.A., Tsikoza, L.T., Ismagilov, I.Z., Dosumov, K.D., and Mustafin, A.G., Pet. Chem., 2011, vol. 51, p. 174.

    Article  CAS  Google Scholar 

  3. Elbashir, N.O., Mirodatos, C., Holmen, A., and Bukur, D.B., Catal. Today, 2014, vol. 228, p. 1.

    Article  CAS  Google Scholar 

  4. Ismagilov, Z.R., Matus, E.V., and Tsikoza, L.T., Energy Environ. Sci., 2008, vol. 1, p. 526.

    Article  CAS  Google Scholar 

  5. Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Methane Oxidation Reactions), Moscow: Nauka, 1998.

    Google Scholar 

  6. Men’shchikov, V.A. and Sinev, M.Yu., Katal. Prom-sti., 2005, vol. 1, p. 25.

    Google Scholar 

  7. Arndt, S., Otremba, T., Simon, U., Yildiz, M., Schubert, H., and Schomacker, R., Appl. Catal., A, 2012, vols. 425–426, p. 53.

    Article  Google Scholar 

  8. Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Appl. Catal., A, 2011, vol. 406, p. 1.

    Article  CAS  Google Scholar 

  9. Olivier, L., Haag, S., Pennemann, H., Hofmann, C., Mirodatos, C., and Veen, A.C., Catal. Today, 2008, vol. 137, p. 80.

    Article  CAS  Google Scholar 

  10. Pak, S., Qiu, P., and Lunsford, J.H., J. Catal., 1998, vol. 179, p. 222.

    Article  CAS  Google Scholar 

  11. Tiemersma, T.P., Tuinier, M.J., Gallucci, F., Kuipers, J.A.M., and van Sint Annaland, M., Appl. Catal., A, 2012, vols. 433–434, p. 96.

    Article  Google Scholar 

  12. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.

    Article  CAS  Google Scholar 

  13. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 4481, p. 104.

    Article  Google Scholar 

  14. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, N., Mota, I.P., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20992.

    Article  CAS  Google Scholar 

  15. Matus, E.V., Ismagilov, I.Z., Sukhova, O.B., Zaikovskii, V.I., Tsikoza, L.T., Ismagilov, Z.R., and Moulijn, J.A., Ind. Eng. Chem. Res., 2007, vol. 46, p. 4063.

    Article  CAS  Google Scholar 

  16. Matus, E.V., Sukhova, O.B., Ismagilov, I.Z., Tsikoza, L.T., and Ismagilov, Z.R., React. Kinet. Catal. Lett., 2009, vol. 98, p. 59.

    Article  CAS  Google Scholar 

  17. Lomonosov, V.I., Gordienko, Yu.A., and Sinev, M.Yu., Kinet. Catal., 2013, vol. 54, no. 4, p. 451.

    Article  CAS  Google Scholar 

  18. Yildiz, M., Simon, U., Otremba, T., Aksu, Y., Kailasam, K., Thomas, A., Schomacker, R., and Arndt, S., Catal. Today, 2014, vol. 228, p. 5.

    Article  CAS  Google Scholar 

  19. Zavyalova, U., Holena, M., Schlogl, R., and Baerns, M., ChemCatChem, 2011, vol. 3, p. 1935.

    Article  CAS  Google Scholar 

  20. Ji, S.F., Xiao, T.C., Li, S.B., Xu, C.Z., Hou, R.L., Coleman, K.S., and Green, M.L.H., Appl. Catal., A, 2002, vol. 225, p. 271.

    Article  CAS  Google Scholar 

  21. Wu, J., Zhang, H., Qin, S., and Hu, C., Appl. Catal., A, 2007, vol. 323, p. 126.

    Article  CAS  Google Scholar 

  22. Chou, L.J., Cai, Y.C., Zhang, B., Niu, J.Z., Ji, S.F., and Li, S.B., Chem. Commun., 2002, p. 996.

    Google Scholar 

  23. Chou, L.J., Cai, Y.C., Zhang, B., Niu, J.Z., Ji, S.F., and Li, S.B., Appl. Catal., A, 2003, vol. 238, p. 185.

    Article  CAS  Google Scholar 

  24. Shahri, S.M.K. and Pour, A.N., J. Nat. Gas Chem., 2010, vol. 19, p. 47.

    Article  CAS  Google Scholar 

  25. Zheng, W., Cheng, D., Chen, F., and Zhan, X., J. Nat. Gas Chem., 2010, vol. 19, p. 515.

    Article  CAS  Google Scholar 

  26. Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol’tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., Dokl. Phys. Chem., 2008, vol. 419, p. 73.

    Article  CAS  Google Scholar 

  27. Nipan, G.D., Artyukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Dokl. Phys. Chem., 2014, vol. 455, p. 60.

    Article  CAS  Google Scholar 

  28. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Gerashchenko, M.V., Dedov, A.G., and Moiseev, I.I., Russ. J. Inorg. Chem., 2013, vol. 58, p. 887.

    Article  CAS  Google Scholar 

  29. Tyunyaev, A.A., Nipan, G.D., Kol’tsova, T.N., Loktev, A.S., Ketsko, V.A., Dedov, A.G., and Moiseev, I.I., Russ. J. Inorg. Chem., 2009, vol. 54, p. 664.

    Article  Google Scholar 

  30. Sinev, M.A., Doctoral (Chem.) Dissertation, Moscow: Semenov Institute of Chemical Physics, 2011.

    Google Scholar 

  31. Makhlin, V.A., Magomedova, M.V., Zyskin, A.G., Loktev, A.S., Dedov, A.G., and Moiseev, I.I., Kinet. Catal., 2011, vol. 52, no. 6, p. 914.

    Article  CAS  Google Scholar 

  32. Pak, S. and Lunsford, J.H., Appl. Catal., A, 1998, vol. 168, p. 131.

    Article  CAS  Google Scholar 

  33. Wang, D.J., Rosynek, M.P., and Lunsford, J.H., J. Catal., 1995, vol. 155, p. 390.

    Article  CAS  Google Scholar 

  34. Ahari, J.S., Sadeghi, M.T., and Zarrinpashne, S., J. Nat. Gas Chem., 2011, vol. 20, p. 204.

    Article  CAS  Google Scholar 

  35. Wang, L., Chou, L., Zhang, B., Song, H., Zhao, J., Yang, J., and Li, S., J. Mol. Catal. A: Chem., 2006, vol. 245, p. 272.

    Article  CAS  Google Scholar 

  36. Wang, X. and Li, S., Shiyou Huagong, 1997, vol. 26, p. 381.

    Google Scholar 

  37. Chua, Y.T., Mohamed, A.R., and Bhatia, S., Appl. Catal., A, 2008, vol. 343, p. 142.

    Article  CAS  Google Scholar 

  38. Chou, L., Cai, Y., Zhang, B., Niu, J., Ji, S., and Li, S., J. Nat. Gas Chem., 2002, vol. 11, p. 131.

    CAS  Google Scholar 

  39. Ehsani, M.R. and Ghoreishi, S.M., J. Ind. Eng. Chem., 2010, vol. 16, p. 923.

    Article  Google Scholar 

  40. Ioffe, L.M., Bosch, P., Viveros, T., Sanchez, H., and Borodko, Y.G., Mater. Chem. Phys., 1997, vol. 51, p. 269.

    Article  CAS  Google Scholar 

  41. Salehoun, V., Khodadadi, A., Mortazavi, Y., and Talebizadeh, A., Chem. Eng. Sci., 2008, vol. 63, p. 4910.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Matus.

Additional information

Original Russian Text © I.Z. Ismagilov, E.V. Matus, S.D. Vasil’ev, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 4, pp. 459–469.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagilov, I.Z., Matus, E.V., Vasil’ev, S.D. et al. Oxidative condensation of methane in the presence of modified MnNaW/SiO2 catalysts. Kinet Catal 56, 456–465 (2015). https://doi.org/10.1134/S0023158415040096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415040096

Keywords

Navigation