Skip to main content
Log in

Thermal stability of Ag–Au, Cu–Au, and Ag–Cu bimetallic nanoparticles supported on highly oriented pyrolytic graphite

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The formation of Ag–Au, Cu–Au, and Ag–Cu bimetallic particles on the surface of highly oriented pyrolytic graphite was studied by X-ray photoelectron spectroscopy. Samples with the core–shell structure of particles were prepared by sequential thermal vacuum deposition. The thermal stability of the samples was studied over a wide range of temperatures (25-400°C) under ultrahigh-vacuum conditions. The heating of the samples to ~250°C leads to the formation of bimetallic alloy particles with a relatively uniform distribution of metals in the bulk. The thermal stability of the samples with respect to sintering depends on the nature of the supported metals. Thus, the Ag–Au particles exhibited the highest thermal resistance (~350°C) under ultrahigh-vacuum conditions, whereas the Ag–Cu particles agglomerated even at ~250°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, A., Liu, X.Y., Mou, C.-Y., and Zhang, T., J. Catal., 2013, vol. 308, p. 258.

    Article  CAS  Google Scholar 

  2. Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev., 2001, vol. 70, p. 147.

    Article  CAS  Google Scholar 

  3. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dil’man, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Russ. Chem. Rev., 2014, vol. 83, p. 885.

    Article  Google Scholar 

  4. Jiang, H.-L. and Xu, Q., J. Mater. Chem., 2011, vol. 21, p. 13705.

    Article  CAS  Google Scholar 

  5. Tao, F., Zhang, S., Nguyen, L., and Zhang, X., Chem. Soc. Rev., 2012, vol. 41, p. 7980.

    Article  CAS  Google Scholar 

  6. Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Renzas, J.R., Liu, Z., Chung, J.Y., Mun, B.S., Salmeron, M., and Somorjai, G.A., Science, 2008, vol. 322, p. 932.

    Article  CAS  Google Scholar 

  7. Gao, F. and Goodman, D.W., Chem. Soc. Rev., 2012, vol. 41, p. 8009.

    Article  CAS  Google Scholar 

  8. Ellert, O.G., Tsodikov, M.V., Nikolaev, S.A., and Novotortsev, V.M., Russ. Chem. Rev., 2014, vol. 83, p. 718.

    Article  Google Scholar 

  9. Chen, M.S., Kumar, D., Yi, C.-W., and Goodman, D.W., Science, 2005, vol. 310, p. 291.

    Article  CAS  Google Scholar 

  10. Pritchard, J.C., He, Q., Ntainjua, E.N., Piccinini, M., Edwards, J.K., Herzing, A.A., Carley, A.F., Moulijn, J.A., Kiely, C.J., and Hutchings, G., Green Chem., 2010, vol. 12, p. 915.

    Article  CAS  Google Scholar 

  11. Liao, X.M., Caps, V., Chu, W., and Pitchon, V., RSC Adv., 2016, vol. 6, p. 4899.

    Article  CAS  Google Scholar 

  12. Liua, X., Wanga, A., Lia, L., Zhang, T., Mou, Ch.-Y., and Lee, J.-F., Prog. Nat. Sci. Mater. Int., 2013, vol. 23, p. 317.

    Article  Google Scholar 

  13. Li, W., Wang, A., Liu, X., and Zhang, T., Appl. Catal., A, 2012, vol. 433-434, p. 146.

    Article  CAS  Google Scholar 

  14. Fiorenza, R., Crisafulli, C., Condorelli, G.G., Lupo, F., and Scire, S., Catal. Lett., 2015, vol. 145, p. 1691.

    Article  CAS  Google Scholar 

  15. Llorca, J., Dominguez, M., Ledesma, C., Chimentao, R., Medina, F., Sueiras, J., Angurell, I., Seco, M., and Rossell, O., J. Catal., 2008, vol. 258, p. 187.

    Article  CAS  Google Scholar 

  16. Ponec, V., Appl. Catal., A, 2001, vol. 222, p. 31.

    Article  CAS  Google Scholar 

  17. Liu, P. and Norskov, J.K., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 3814.

    Article  CAS  Google Scholar 

  18. Xu, J., White, T., Li, P., He, C.H., Yu, J.G., Yuan, W.K., and Han, Y.F., J. Am. Chem. Soc., 2010, vol. 132, p. 10398.

    Article  CAS  Google Scholar 

  19. Gao, F., Wang, Y.L., and Goodman, D.W., J. Am. Chem. Soc., 2009, vol. 131, p. 5734.

    Article  CAS  Google Scholar 

  20. Bukhtiyarov, A.V., Kvon, R.I., Nartova, A.V., and Bukhtiyarov, V.I., Russ. Chem. Bull., 2011, vol. 60, p. 1977.

    Article  CAS  Google Scholar 

  21. Demidov, D.V., Prosvirin, I.P., Sorokin, A.M., Rosha, T., Knop-Gerike, A., and Bukhtiyarov, V.I., Kinet. Catal., 2011, vol. 52, p. 855.

    Article  CAS  Google Scholar 

  22. Kalinkin, A.V., Smirnov, M.Yu., Bukhtiyarov, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, p. 796.

    Article  CAS  Google Scholar 

  23. Bukhtiyarov, A.V., Nartova, A.V., and Kvon, R.I., Kinet. Catal., 2011, vol. 52, p. 756.

    Article  CAS  Google Scholar 

  24. Bukhtiyarov, A.V., Prosvirin, I.P., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2016, vol. 367, p. 214.

    Article  CAS  Google Scholar 

  25. http://www.bessy.de/rglab/index.html

  26. Tanuma, S., Powell, C.J., and Penn, D.R., Surf. Interface Anal., 1993, vol. 21, p. 165.

    Article  Google Scholar 

  27. Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester, UK: Wiley, 1983.

  28. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy, Chastain J., King R.C., Jr., Eds., Eden Prairie, Minn.: Perkin Elmer, 1992.

  29. Yeh, J.-J. and Lindau, I., At. Data Nucl. Data Tables, 1985, vol. 32, p. 1.

    Article  CAS  Google Scholar 

  30. http://www.quases.com/products/quases-imfp-tpp2m/

  31. http://xpspeak.software.informer.com/4.1/

  32. Demidov, D.V., Prosvirin, I.P., Sorokin, A.M., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2011, vol. 1, p. 1432.

    Article  CAS  Google Scholar 

  33. Yang, D.-Q., Zhang, G.-Z., Sacher, E., Jose-Yacaman, M., and Elizondo, N., J. Phys. Chem. B, 2006, vol. 110, p. 8348.

    Article  CAS  Google Scholar 

  34. Ono, L.K., Sudfeld, D., and Roldan Cuenya, B., Surf. Sci., 2006, vol. 600, p. 5041.

    Article  CAS  Google Scholar 

  35. Schmid, M., Madix, R.J., and Friend, C.M., Surf. Sci., 2016, vol. 643, p. 36.

    Article  CAS  Google Scholar 

  36. Yi, C.W., Luo, K., Wei, T., and Goodman, D.W., J. Phys. Chem. B, 2005, vol. 109, p. 18535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bukhtiyarov.

Additional information

Original Russian Text © A.V. Bukhtiyarov, I.P. Prosvirin, I.A. Chetyrin, A.A. Saraev, V.V. Kaichev, V.I. Bukhtiyarov, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 5, pp. 711–718.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhtiyarov, A.V., Prosvirin, I.P., Chetyrin, I.A. et al. Thermal stability of Ag–Au, Cu–Au, and Ag–Cu bimetallic nanoparticles supported on highly oriented pyrolytic graphite. Kinet Catal 57, 704–711 (2016). https://doi.org/10.1134/S0023158416050049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416050049

Keywords

Navigation