Skip to main content

Haloalkaliphilic Sulfur-Oxidizing Bacteria

  • Reference work entry
The Prokaryotes

1 Introduction

Chemolithoautotrophic sulfur-oxidizing bacteria (SOB) play an important role in the element cycling in natural and man-made environments because of their extremely high capacity to transform various sulfur compounds and their contribution to secondary production of organic matter. They are widely distributed in various habitats, associating primarily with sulfide-oxygen interface layers, where they successfully compete with chemical sulfide oxidation by oxygen. Energetically, the reaction of complete oxidation of sulfide or thiosulfate to sulfate (8 electrons) is among the most attractive for chemosynthesis, and not surprisingly, sulfur oxidizers can be found in many different groups of prokaryotes. Currently, lithoautotrophic sulfur bacteria are mostly found among the proteobacteria (alpha, beta, gamma and epsilon subdivision; The Colorless Sulfur Bacteria in the second edition; Kuenen and Robertson, 1992; Kelly and Wood, 2000). The currently known exceptions outside...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Antipov, A. N., D. Y. Sorokin, N. P. L’vov, and J. G. Kuenen. 2003 New enzyme belonging to the family of molybdenum-free nitrate reductases Biochem. J. 369 185–189

    Article  PubMed  CAS  Google Scholar 

  • Banciu, H., D. Y. Sorokin, E. A. Galinski, G. Muyzer, R. Kleerebezem, and J. G. Kuenen. 2004a Thioalkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic facultatively alkaliphilic and extremely salt-tolerant sulfur-oxidizing bacterium from a hypersaline alkaline lake Extremophiles 8 325–334

    PubMed  CAS  Google Scholar 

  • Banciu, H., D. Y. Sorokin, R. Kleerebezem, G. Muyzer, E. A. Galinski, and J. G. Kuenen. 2004b Influence of sodium on the growth of haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture Extremophiles 8 185–192

    Article  PubMed  CAS  Google Scholar 

  • Baumgarte, S. 2003 Microbial Diversity of Soda Lake Habitats [PhD thesis] Carolo-Wilhelmina University Braunschweig, Germany 79–81

    Google Scholar 

  • De Kruyff, C. D., J. I. van der Walt, and H. M. Schwartz. 1957 The utilization of thiocyanate and nitrate by thiobacilli Ant. v. Leeuwenhoek 23 305–316

    Article  Google Scholar 

  • Eugster, H. P. 1970 Chemistry and origins of the brines of Lake Magadi Mineral. Soc. Am., Spec. Publ. 3 215–235

    Google Scholar 

  • Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. 2001 Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol. 67 2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko, V. M., B. B. Namsaraev, A. V. Kulyrova, D. G. Zavarzina, and T. N. Zhilina. 1999 Activity of sulfate-reducing bacteria in the sediments of the soda lakes in south-east Transbaikal area Microbiology 68 580–586

    CAS  Google Scholar 

  • Grant, W. D., and B. J. Tindall. 1986 The alkaline saline environment In: R. A. Herbert and G. A. Codd (Eds.) Microbes in Extreme Environments Academic Press London, UK 25–54

    Google Scholar 

  • Horikoshi, K. 1991 Microorganisms in Alkaline Environments Kodansha Tokyo, Japan

    Google Scholar 

  • Humayoun, S. B., N. Bano, and J. T. Hollibaugh. 2003 Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California Appl. Environ. Microbiol. 69 1030–1042

    Article  PubMed  CAS  Google Scholar 

  • Imhoff, J. F., H. G. Sahl, G. S. H. Soliman, and H. G. Trüper. 1979 The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes Geomicrobiol. J. 1 219–234

    Article  CAS  Google Scholar 

  • Imhoff, J. F., and J. Süling. 1996 The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses Arch. Microbiol. 165 106–113

    Article  PubMed  CAS  Google Scholar 

  • Isachenko, B. L. 1951 Chloride, sulfate and soda lakes of Kulunda steppe and its biogenic processes [in Russian] Selected Works Academy of Sciences USSR Leningrad, Russia 2 143–162

    Google Scholar 

  • Jones, B. F., H. P. Eugster, and S. L. Rettig. 1977 Hydrochemistry of the Lake Magadi basin, Kenya Geochim. Cosmochim. Acta 41 53–72

    Article  CAS  Google Scholar 

  • Jones, B. E., W. D. Grant, A. W. Duckworth, and G. G. Owenson. 1998 Microbial diversity of soda lakes Extremophiles 2 191–200

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, A., D. Zenvirth, L. Reinhold, and J. A. Berry. 1982 Involvement of a primary electrogenic pump in the mechanism of HCO3- uptake by the cyanobacterium Anabaena variabilis Plant Physiol. 69 978–982

    Article  PubMed  CAS  Google Scholar 

  • Kappler, U., and C. Dahl. 2001 Enzymology and molecular biology of sulfite oxidation FEMS Microbiol. Lett. 203 1–9

    PubMed  CAS  Google Scholar 

  • Kelly, D. P., J. K. Shergill, W.-P. Lu, and A. P. Wood. 1997 Oxidative metabolism of inorganic sulfur compounds by bacteria Ant. v. Leeuwenhoek 71 95–107

    Article  CAS  Google Scholar 

  • Kelly, D. P., and A. P. Wood. 2000 Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov Int. J. Syst. Evol. Microbiol. 50 511–516

    Article  PubMed  Google Scholar 

  • Kuenen, J. G., L. A. Robertson, and O. H. Tuovinen. 1992 The genera Thiobacillus, Thiomicrospira and Thiosphaera In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes Springer New York, NY 3 2638–2657

    Google Scholar 

  • Loiko, N. G., V. S. Soina, D. Y. Sorokin, L. L. Mityushina, and G. I. El’-Registan. 2003 Production of resting forms by the Gram-negative chemolithoautotrophic bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum Microbiology 72 285–294

    Article  CAS  Google Scholar 

  • Nelson, D. C., B. B. Jorgensen, and N. P. Revsbech. 1986 Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients Appl. Environ. Microbiol. 52 225–233

    PubMed  CAS  Google Scholar 

  • Pfennig, N., and K. D. Lippert. 1966 Ãœber das Vitamin B12-bedürfnis phototropher Schwefelbakterien Arch. Mikrobiol 55 245–256

    Article  CAS  Google Scholar 

  • Pronk, J. T., R. Meulenburg, W. Hazeu, P. Bos, and J. G. Kuenen. 1990 Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli FEMS Microbiol. Rev. 75 293–306

    Article  CAS  Google Scholar 

  • Rees, H. C., W. D. Grant, B. E. Jones, and S. Heaphy. 2004 Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. [{http://dx.doi.org/10.1007/s00792-003-0361-4}Online] Extremophiles 8

    Google Scholar 

  • Robertson, L. A., and J. G. Kuenen. 1992 The use of natural bacterial populations for the treatment of sulfur-containing wastewater Biodegradation 3 239–254

    Article  Google Scholar 

  • Sorokin, D. Y., A. de Jong, L. A. Robertson, and J. G. Kuenen. 1998 Purification and partial characterizaton of sulfide dehydrogenase from alkaliphilic obligately autotrophic sulfur oxidizing bacterium FEBS Lett. 427 11–14

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., L. A. Robertson, and J. G. Kuenen. 2000 Isolation and characterization of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria Ant. v. Leeuwenhoek 77 251–260

    Article  CAS  Google Scholar 

  • Sorokin D. Y., J. G. Kuenen, and M. Jetten. 2001a Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Hioalkalivibrio denitrificans Arch. Microbiol. 175 94–101

    Article  PubMed  CAS  Google Scholar 

  • Sorokin D. Y., T. P. Tourova, A. M. Lysenko, and J. G. Kuenen. 2001b Microbial thiocyanate utilization under highly alkaline conditions Appl. Environ. Microbiol. 67 528–538

    Article  PubMed  CAS  Google Scholar 

  • Sorokin D. Y., A. M. Lysenko, L. L. Mityushina, T. P. Tourova, B. E. Jones, F. A. Rainey, L. A. Robertson, and J. G. Kuenen. 2001c Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes Int. J. Syst. Evol. Microbiol. 51 565–580

    PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., V. M. Gorlenko, T. P. Tourova, T. V. Kolganova, A. I. Tsapin, K. H. Nealson, and J. G. Kuenen. 2002a Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., new species of alkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from a hypersaline alkaline Mono Lake (California) Int. J. Syst. Evol. Microbiol. 52 913–920

    Article  PubMed  CAS  Google Scholar 

  • Sorokin D. Y., T. P. Tourova, T. V. Kolganova, K. A. Sjollema, and J. G. Kuenen. 2002b Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake Int. J. Syst. Evol. Microbiol. 52 2175–2182

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., T. P. Tourova, A. M. Lysenko, L. L. Mityushina, and J. G. Kuenen. 2002c Thioalkalivibrio thiocyanooxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria from the soda lakes able to grow with thiocyanate Int. J. Syst. Evol. Microbiol. 52 657–664

    PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., A. N. Antipov, and J. G. Kuenen. 2003a Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake Arch. Microbiol. 180 127–133

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., H. Banciu, M. van Loosdrecht, and J. G. Kuenen. 2003b Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes Extremophiles 7 195–203

    PubMed  Google Scholar 

  • Sorokin, D. Y., T. P. Tourova, K. A. Sjollema, and J. G. Kuenen. 2003c Thioalkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake Int. J. Syst. Evol. Microbiol. 53 1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., V. M. Gorlenko, B. B. Namsaraev, Z. B. Namsaraev, A. M. Lysenko, B. T. Eshinimaev, V. N. Khmelenina, Y. A. Trotsenko, and J. G. Kuenen. 2004a Prokaryotic communities of the north-eastern Mongolian soda lakes Hydrobiologia 522 235–248

    Article  Google Scholar 

  • Sorokin, D. Y., T. P. Tourova, A. N. Antipov, G. Muyzer, and J. G. Kuenen. 2004b Anaerobic growth of the haloalkaliphilic denitrifying sulphur-oxidising bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate Microbiology (UK) 150 2435–2442

    Article  CAS  Google Scholar 

  • Takaichi, S., T. Maoka, N. Akimoto, D. Y. Sorokin, H. Banciu, and J. G. Kuenen. 2004 Two novel yellow pigments natronochrome and chloronatronochrome from the natrono(alkali)philic sulfur-oxidizing bacterium Thialkalivibrio versutus ALJ 15 Tetrahedron Lett. 45(45) 303–305

    Google Scholar 

  • Tindall, B. J. 1988 Procaryotic life in the alkaline, saline, athalassic environment In: F. Rodriguez-Valera (Ed.) Halophilic Bacteria CRC Press Boca Raton, FL 31–67

    Google Scholar 

  • Visser, J. M., G. A. H. de Jong, L. A. Robertson, and J. G. Kuenen. 1997 A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colorless sulfur bacterium Thiobacillus sp. W5 Arch. Microbiol. 167 295–301

    Article  PubMed  CAS  Google Scholar 

  • Youatt, J. B. 1954 Studies on the metabolism of Thiobacillus thiocyanooxidans J. Gen. Microbiol. 11 139–149

    Article  PubMed  CAS  Google Scholar 

  • Zavarzin, G. A., T. N. Zhilina, and V. V. Kevbrin. 1999 The alkaliphilic microbial community and its functional diversity Mikrobiology 68 503–521

    CAS  Google Scholar 

  • Zavarzin, G. A., and T. N. Zhilina. 2000 Anaerobic chemotrophic alkaliphiles In: J. Seckbach (Ed.) Journey to Diverse Microbial World Kluwer Dordrecht, The Netherlands 191–208

    Chapter  Google Scholar 

  • Zhilina, T. N., G. A. Zavarzin, F. A. Rainey, E. F. Pikuta, G. A. Osipov, and N. A. Kostrikina. 1997 Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfate reducing bacterium Int. J. Syst. Evol. Microbiol. 47 144–149

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Sorokin, D.Y., Banciu, H., Robertson, L.A., Kuenen, J.G. (2006). Haloalkaliphilic Sulfur-Oxidizing Bacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_30

Download citation

Publish with us

Policies and ethics