Skip to main content
Log in

CORRELATION BETWEEN CHEMICAL COMPOSITION AND CURIE TEMPERATURE OF A NICKEL-COBALT FERRITE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Modifying the properties of spinel ferrites by doping allows significantly expanding their application in various fields of science and industry. The present work reports results of the study of Ni1–xCoxFe2O4 ceramic samples (x = 0-1 with a step of 0.1) prepared by solid phase synthesis. The morphology and size of the particles of the synthesized powders are determined. The monophase character of the synthesized materials is confirmed by X-ray powder diffraction. The unit cell parameter a,b,c increase from 8.3375(3) Å to 8.3819(4) Å upon the substitution of nickel by cobalt. The differential scanning calorimetry data indicate heat capacity jumps corresponding to a thermal second-order phase transition. The phase transition temperature depends on the ceramics composition and decreases monotonically from 596 °C to 530 °C as nickel is replaced by cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. G. Kesavan, M. Pichumani, S.-M. Chen, and C.-S. Ko. Surfactant-assisted (CTAB, PVA, PVP) thermal decomposition synthesis of strontium spinel ferrite nanocrystals for electrochemical sensing of cytostatic drug flutamide. Mater. Today Chem., 2022, 26, 101045. https://doi.org/10.1016/j.mtchem.2022.101045

    Article  CAS  Google Scholar 

  2. T. Rafique, M. Atif, A. U. Rehman, H. Wahab, W. Khalid, Z. Ali, and M. Nadeem. Colossal permittivity, resistive and magnetic properties of zinc substituted manganese ferrites. J. Alloys Compd., 2022, 923, 166454. https://doi.org/10.1016/j.jallcom.2022.166454

    Article  CAS  Google Scholar 

  3. V. J. Angadi, I. S. Yahia, H. Y. Zahran, M. C. Oliveira, E. Longo, S. P. Kubrin, S. O. Manjunatha, R. A. P. Ribeiro, and M. H. Ghozza. Effect of Eu3+ on the structural, magnetic and Mössbauer spectroscopy studies of copper ferrite. J. Magn. Magn. Mater., 2022, 562, 169789. https://doi.org/10.1016/j.jmmm.2022.169789

    Article  CAS  Google Scholar 

  4. Z. Gao, J. Zhu, Q. Zhu, C. Wang, and Y. Cao. Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. Sci. Total Environ., 2022, 847, 157405. https://doi.org/10.1016/j.scitotenv.2022.157405

    Article  CAS  PubMed  Google Scholar 

  5. Y. Slimani, R. Sivakumar, S. S. Meena, R. Vignesh, G. Yasin, E. Hannachi, M. A. Almessiere, Z. Trabelsi, K. M. Batoo, A. Baykal, N. Sfina, S. Brini, S. E. Shirsath, I. Ercan, and B. Özçelik. BaTiO3/(Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4) composites: Analysis of the effect of Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4 doping at different concentrations on the structural, morphological, optical, magnetic, and magnetoelectric coupling properties of BaTiO3. Ceram. Int., 2022, 48(20), 30499-30509. https://doi.org/10.1016/j.ceramint.2022.06.330

    Article  CAS  Google Scholar 

  6. T. Zhong, X. Li, M. Wu, and J.-M. Liu. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Natl. Sci. Rev., 2020, 7(2), 373-380. https://doi.org/10.1093/nsr/nwz169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Priese and J. Töpfer. The effect of microstructure on the initial permeability of Ni-Zn ferrite. J. Magn. Magn. Mater., 2022, 560, 169581. https://doi.org/10.1016/j.jmmm.2022.169581

    Article  CAS  Google Scholar 

  8. S. Kanithan, N. Arun Vignesh, K. M. Katubi, P. S. Subudhi, E. Yanmaz, J. Arockia Dhanraj, N. S. Alsaiari, khamael M. Abualnaja, M. Sukumar, M. Sundararajan, S. Baskar, S. Sahu, and C. S. Dash. Enhanced optical, magnetic, and photocatalytic activity of Mg2+ substituted NiFe2O4 spinel nanoparticles. J. Mol. Struct., 2022, 1265, 133289. https://doi.org/10.1016/j.molstruc.2022.133289

    Article  CAS  Google Scholar 

  9. M. Thavarani, M. C. Robert, S. B. Prasath, N. Pavithra, P. Christuraj, and S. Saravanakumar. Effect of mediator on the auto combustion synthesis, magnetic properties, and electron density distribution of spinel ferrite Mn0.05Zn0.95Fe2O4. Brazilian J. Phys., 2022, 52(5), 177. https://doi.org/10.1007/s13538-022-01181-w

    Article  CAS  Google Scholar 

  10. D. Parajuli, N. Murali, A. V. Rao, A. Ramakrishna, S. Y. Mulushoa, and K. Samatha. Structural, dc electrical resistivity and magnetic investigation of Mg, Ni, and Zn substituted Co–Cu nano spinel ferrites. S. Afr. J. Chem. Eng., 2022, 42, 106-114. https://doi.org/10.1016/j.sajce.2022.07.009

    Article  Google Scholar 

  11. C. Srinivas, M. Deepty, S. A. V. Prasad, G. Prasad, E. R. Kumar, S. S. Meena, N. V. Seetala, D. D. Willams, and D. L. Sastry. Study of structural, vibrational, elastic and magnetic properties of uniaxial anisotropic Ni–Zn nanoferrites in the context of cation distribution and magnetocrystalline anisotropy. J. Alloys Compd., 2021, 873, 159748. https://doi.org/10.1016/j.jallcom.2021.159748

    Article  CAS  Google Scholar 

  12. S. Ruiz-Gómez, A. Mandziak, L. Martín-García, J. E. Prieto, P. Prieto, C. Munuera, M. Foerster, A. Quesada, L. Aballe, and J. de domain wall pinning in cobalt ferrite microstructures. Appl. Surf. Sci., 2022, 600, 154045. https://doi.org/10.1016/j.apsusc.2022.154045

    Article  CAS  Google Scholar 

  13. K. Pubby, P. Sharma, and S. B. Narang. Structural, magnetic, dielectric, microwave absorption, and optical characterization of Ni0.1Co0.9(MnZr)xFe2–2xO4/BaySr1–yFe12O19. J. Mater. Sci. Mater. Electron., 2020, 31(1), 599-609. https://doi.org/10.1007/s10854-019-02564-7

    Article  CAS  Google Scholar 

  14. S. Gaba, P. S. Rana, and A. Kumar. Influence of La3+ ion doping on structural and magnetic properties of nickel ferrite nanoparticles prepared by sol-gel route. AIP Conf. Proc., 2019, 2093, 020036. https://doi.org/10.1063/1.5097105

    Book  Google Scholar 

  15. J. S. Ghodake, R. C. Kambale, T. J. Shinde, P. K. Maskar, and S. S. Suryavanshi. Magnetic and microwave absorbing properties of Co2+ substituted nickel–zinc ferrites with the emphasis on initial permeability studies. J. Magn. Magn. Mater., 2016, 401, 938-942. https://doi.org/10.1016/j.jmmm.2015.11.009

    Article  CAS  Google Scholar 

  16. A. Riaz, M. A. Khan, M. Junaid, S. Gulbadan, A. Manzoor, S. R. Ejaz, G. A. Ashraf, H. H. Somaily, M. Morsi, and T. Alshahrani. Effect of Nd3+ ions on structural, spectral, magnetic, and dielectric properties of Co–Zn soft ferrites synthesized via sol-gel technique. Mater. Chem. Phys., 2022, 290, 126519. https://doi.org/10.1016/j.matchemphys.2022.126519

    Article  CAS  Google Scholar 

  17. R. Díaz-Pardo and R. Valenzuela. Characterization of magnetic phases in nanostructured ferrites by electron spin resonance. In: Advanced Electromagnetic Waves / Ed. S.O. Bashir. Rijeka, Croatia: InTech, 2015. https://doi.org/10.5772/61508

    Chapter  Google Scholar 

  18. C. Suchomski, B. Breitung, R. Witte, M. Knapp, S. Bauer, T. Baumbach, C. Reitz, and T. Brezesinski. Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics. Beilstein J. Nanotechnol., 2016, 7, 1350-1360. https://doi.org/10.3762/bjnano.7.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. A. Vinnik, D. P. Sherstyuk, V. E. Zhivulin, D. E. Zhivulin, A. Y. Starikov, S. A. Gudkova, D. A. Zherebtsov, D. A. Pankratov, Y. A. Alekhina, N. S. Perov, S. V. Trukhanov, E. L. Trukhanova, and A. V. Trukhanov. Impact of the Zn–Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int., 2022, 48(13), 18124-18133. https://doi.org/10.1016/j.ceramint.2022.03.070

    Article  CAS  Google Scholar 

  20. D. P. Sherstyuk, A. Y. Starikov, V. E. Zhivulin, D. A. Zherebtsov, S. A. Gudkova, N. S. Perov, Y. Alekhina, K. A. Astapovich, D. A. Vinnik, and A. V. Trukhanov. Effect of Co content on magnetic features and SPIN states in Ni–Zn spinel ferrites. Ceram. Int., 2021, 47(9), 12163-12169. https://doi.org/10.1016/j.ceramint.2021.01.063

    Article  CAS  Google Scholar 

  21. P. P. Mohapatra, H. K. Singh, M. S. R. N. Kiran, and P. Dobbidi. Co substituted Ni–Zn ferrites with tunable dielectric and magnetic response for high-frequency applications. Ceram. Int., 2022, 48(19), 29217-29228. https://doi.org/10.1016/j.ceramint.2022.05.197

    Article  CAS  Google Scholar 

  22. H.-S. Guo, L. Zhang, Y.-L. Yan, J. Zhang, J. Wang, S.-Y. Wang, L.-Z. Li, and X.-H. Wu. Effect of lanthanum substitution on structural, magnetic, and electric properties of Ni–Zn–Co ferrites for radio frequency and microwave devices. Ceram. Int., 2022, 48(15), 22516-22522. https://doi.org/10.1016/j.ceramint.2022.04.275

    Article  CAS  Google Scholar 

  23. N. Kumar, Archana, R. K. Singh, V. Kumar, and S. B. Das. Tuning in structural, optoelectronic, magnetic and ferroelectric properties of NiFe2O4 ceramics engineering nanomaterials by substitution of rare earth element, Pr3+ prepared by sol-gel method. J. Mater. Sci. Mater. Electron., 2022, 33(9), 6131-6149. https://doi.org/10.1007/s10854-022-07790-0

    Article  CAS  Google Scholar 

  24. X. Xie, B. Wang, Y. Wang, C. Ni, X. Sun, and W. Du. Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review. Chem. Eng. J., 2022, 428, 131160. https://doi.org/10.1016/j.cej.2021.131160

    Article  CAS  Google Scholar 

  25. H. E. Swanson, H. F. McMurdie, M. C. Morris, E. H. Evans, and B. Paretzkin. Standard X-ray Diffraction Powder Patterns: Section 9. Data for 63 Substances. Report. Washington, D.C., USA: National Bureau of Standards, Department of Commerce, 1971.

  26. P. Sowjanya, N. P. Kumar, A. Chelvane, and M. V. R. Reddy. Synthesis and analysis of low field high magnetostrictive Ni–Co ferrite for magneto-electric energy harvesting applications. Mater. Sci. Eng., B, 2022, 279, 115674. https://doi.org/10.1016/j.mseb.2022.115674

    Article  CAS  Google Scholar 

  27. Atomistic Simulation Group. Database of Ionic Radii. Radii for Ni. http://abulafia.mt.ic.ac.uk/shannon/radius.php?Element=Ni

  28. Atomistic Simulation Group. Database of Ionic Radii. Radii for Co. http://abulafia.mt.ic.ac.uk/shannon/radius.php?Element=Co

  29. M. S. R. Prasad, B. B. V. S. V. Prasad, and B. Rajesh Babu. Magnetic, structural and dc electrical resistivity studies on the divalent cobalt substituted Ni–Zn ferrite system. Int. J. Mod. Phys. B, 2015, 29(12), 1550067. https://doi.org/10.1142/s0217979215500678

    Article  CAS  Google Scholar 

  30. S. A. Gudkova, D. A. Vinnik, V. E. Zhivulin, A. S. Chernukha, D. A. Zherebtsov, E. A. Trofimov, A. V. Trukhanov, S. V. Trukhanov, M. Kalandija, A. S. Semisalova, N. S. Perov, A. V. Senin, N. S. Zabeivorota, and G. G. Mikhailov. Synthesis, structure and properties of barium and barium lead hexaferrite. J. Magn. Magn. Mater., 2019, 470, 101-104. https://doi.org/10.1016/j.jmmm.2017.11.114

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a subsidy for the Strategic Academic Leadership Program Priority 2030 (Science and Universities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sherstyuk.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 117238.https://doi.org/10.26902/JSC_id117238

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherstyuk, D.P., Zhivulin, V.E., Starikov, A.Y. et al. CORRELATION BETWEEN CHEMICAL COMPOSITION AND CURIE TEMPERATURE OF A NICKEL-COBALT FERRITE. J Struct Chem 64, 1743–1750 (2023). https://doi.org/10.1134/S0022476623090172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090172

Keywords

Navigation