Skip to main content
Log in

Understanding Hydrogen Bonding in Terms of the Theory of Generalized Charges

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New expressions for the energy and the length of interatomic bonds depending on atomic number, bond order, and angular momentum are derived within the theory of generalized charges, which is an asymptotic approximation for interatomic forces in the quantum-statistical model of a multicomponent electron gas. In particular, expressions for bond energies and bond lengths in hydrides are derived as functions of atomic numbers. As a consequence of the developed theory, hydrogen bonding is viewed as a one-electron covalent bonding, which is used to derive corresponding quantitative relations. The energy of hydrogen bonding cannot be lower than some specific value determined by the charge of the bonded atom. The region of existence of hydrogen bonding is established. The boundaries of the region are determined by the classes of substances distinguished by their ability to form hydrogen bonding. Quantitative estimations are used to explain the ability or inability of substances containing electronegative atoms to dissolve in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pauling. Nature, 1948, 161, 707.

    Article  CAS  Google Scholar 

  2. N. D. Sokolov. Usp. Fiz. Nauk, 1955, 57, 205.

    Article  CAS  Google Scholar 

  3. P. Hobza. Annu. Rep. Prog. Chem. Sect., 2004, 100, 3.

    Article  CAS  Google Scholar 

  4. J. J. Dannenberg, L. Haskamp, and A. Masunov. J. Phys. Chem. A, 1999, 103, 7083.

    Article  CAS  Google Scholar 

  5. B. G. Oliveira and M. L. A. A. Vasconcellos. J. Mol. Struct.: THEOCHEM, 2006, 774, 83.

    Article  CAS  Google Scholar 

  6. T. K. Ghant, V. N. Staroverov, P. R. Koren, and E. R. Davidson. J. Am. Chem. Soc., 2000, 122, 1210.

    Article  Google Scholar 

  7. A. M. Dolgonosov. Russ. J. Inorg. Chem., 2000, 45, 897.

    Google Scholar 

  8. A. M. Dolgonosov. Rus. J. Phys. Chem., 2000, 74, S324.

    Google Scholar 

  9. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2001, 75, 1659.

    Google Scholar 

  10. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2002, 76, 993.

    Google Scholar 

  11. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2002, 76, 2015.

    Google Scholar 

  12. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2003, 77, 764.

    Google Scholar 

  13. A. M. Dolgonosov. Russ. J. Phys. Chem. A, 2008, 82, 2079.

    Article  CAS  Google Scholar 

  14. A. M. Dolgonosov. Model’ Elektronnogo Gaza i Teoriya Obobschennykh Zaryadov Dlya Opisaniya Mezhatomnykh Vzaimodeistviy i Adsorbtsii (Electron Gas Model and Theory of Generalized Charges for Description of Interatomic Interactions) [in Russian]. LIBROKOM: Moscow, 2009.

    Google Scholar 

  15. A. M. Dolgonosov. Nespetsificheskaya selektivnost’ v Probleme Modelirovaniya Vysokoeffektivnoy Khromatografii (Nonspecific Selectivity in the Problem of Modeling of High-performance Chromatography) [in Russian]. KRASAND: Moscow, 2012.

    Google Scholar 

  16. A. M. Dolgonosov. Russ. Chem. Bull., 2016, 65, 952.

    Article  CAS  Google Scholar 

  17. A. M. Dolgonosov. Russ. J. Inorg. Chem., 2015, 60, 194.

    Article  CAS  Google Scholar 

  18. A. M. Dolgonosov. Russ. J. Inorg. Chem., 2017, 62, 344.

    Article  CAS  Google Scholar 

  19. A. M. Dolgonosov. Russ. J. Inorg. Chem., 2019, 64(4).

  20. A. I. Pertsin and A. I. Kitaigorodsky. The Atom-Atom Potential Method in the Physics and Chemistry of Organic Molecular Solids. Springer Verlag: Berlin, 1986.

    Google Scholar 

  21. I. G. Kaplan. Intermolecular Interactions: Physical Picture, Computational Methods, and Model Potentials. Wiley, 2006.

  22. N. N. Avgul’, A. V. Kiselev, and D. P. Poshkus. Adsorbtsiya Gazov i Parov na Odnorodnykh Poverkhnostyakh (Adsorption of Gases and Vapors on Homogeneous Surfaces). Khimiya: Moscow, 1975.

    Google Scholar 

  23. Theory of the Inhomogeneous Electron Gas / Ed. S. Lundqvist and N. H. March. Plenum Press: New York, 1983.

    Google Scholar 

  24. W. Koch and M. C. Holthausen. A Chemist’s Guide to Density Functional Theory. Wiley-VCH Verlag GmbH, 2001, 293.

  25. J. C. Slater and K. H. Johnson. Phys. Rev. B, 1972, 5, 844.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant No. 18-03-00382a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dolgonosov.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 11, pp. 1765–1774.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgonosov, A.M. Understanding Hydrogen Bonding in Terms of the Theory of Generalized Charges. J Struct Chem 60, 1693–1702 (2019). https://doi.org/10.1134/S0022476619110015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619110015

Keywords

Navigation