Skip to main content
Log in

Effect of Eu3+ on Calcium-Dependent Processes in Vertebrate Myocardium

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The inotropic and chronotropic effects of Eu3+ on spontaneous atrial contraction of the frog Rana ridibunda myocardium at different temperatures were studied, as well as the effects of Ca2+ and Eu3+ on isolated rat heart mitochondria, energized with glutamate and malate (the Ist respiratory complex substrates). It turned out that Eu3+ in Ringer’s solution significantly reduced the amplitude of spontaneous contractions. However, the half-relaxation period of spontaneous contractions changed insignificantly. At the same time, Eu3+ also revealed a negative chronotropic effect, which is manifested in a decrease in the frequency of spontaneous contractions. The mitochondrial swelling study showed that Eu3+ increased the energy-dependent K+ transport into the matrix in the K-acetate medium. However, Eu3+ did not affect the inner membrane proton permeability since the mitochondria swelling in the medium with NH4NO3 did not depend on the presence of Eu3+. State 40 mitochondrial respiration (substrate in the medium) was slightly increased by Eu3+. At the same time, Eu3+ did not affect the energized mitochondria respiration in the presence of ADP (state 3) or 2,4-dinitrophenol (state 3UDNP). The respiration decreased in experiments with calcium load of mitochondria regardless of the medium presence of Eu3+. Eu3+ diminished the mitochondria Ca2+-induced swelling in the above media experiments. This result can be associated with the opening of the mitochondrial permeability transition pore in their inner membrane. Eu3+ did not affect the inner membrane potential (ΔΨmito). The data obtained allow us to understand better the Eu3+ action mechanisms on Ca2+-dependent processes in the vertebrate myocardium and mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Henriques B, Morais T, Cardoso CED, Freitas R, Viana T, Ferreira N, Fabre E, Pinheiro-Torres J, Pereira E (2021) Can the recycling of europium from contaminated waters be achieved through living macroalgae? Study on accumulation and toxicological impacts under realistic concentrations. Sci Total Environ 786: 147176. https://doi.org/10.1016/j.scitotenv.2021.147176

    Article  CAS  PubMed  Google Scholar 

  2. Attia MSM (2013) Europium: Synthesis, Characteristics and Potential Applications. Nova Science Pub Inc., New York; United States pp. 1–325.

    Google Scholar 

  3. Lazaris D, Liasko R, Leonardos I, Evangelou A, Kalfakakou V (2012) Toxic effects of Europium chloride on developing zebrafish (Danio rerio) embryos. J Biol Res (Thessaloniki) 18: 291–296.

  4. Jin Y, Chen S, Duan J, Jia G, Zhang J (2015) Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage. J Inorg Biochem 146: 28–36. https://doi.org/10.1016/j.jinorgbio.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Darghal N, Garnier-Suillerot A, Bouchemal N, Gras G, Geraldes CF, Salerno M (2010) Accumulation of Eu3+ chelates in cells expressing or not P-glycoprotein: implications for blood-brain barrier crossing. J Inorg Biochem 104: 47–54. https://doi.org/10.1016/j.jinorgbio.2009.09.026

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Zhang C, Jia G, Duan J, Wang S, Zhang J (2014) Size-dependent cytotoxicity of europium doped NaYF4 nanoparticles in endothelial cells. Mater Sci Eng C Mater Biol Appl 43: 330–342. https://doi.org/10.1016/j.msec.2014.07.029

    Article  CAS  PubMed  Google Scholar 

  7. Alicka M, Sobierajska P, Kornicka K, Wiglusz RJ, Marycz K (2019) Lithium ions (Li+) and nanohydroxyapatite (nHAp) doped with Li+ enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li+ and co-doped with europium (III) and samarium (III) ions. Mater Sci Eng C Mater Biol Appl 99: 1257–1273. https://doi.org/10.1016/j.msec.2019.02.073

    Article  CAS  PubMed  Google Scholar 

  8. Alpturk O, Rusin O, Fakayode SO, Wang W, Escobedo JO, Warner IM, Crowe WE, Kraґl V, Pruet JM, Strongin RM (2006) Lanthanide complexes as fluorescent indicators for neutral sugars and cancer biomarkers. Proc Natl Acad USA 103: 9756–9760.

    Article  CAS  Google Scholar 

  9. Londhe S, Patra CR (2021) Biomedical applications of europium hydroxide nanorods. Nanomedicine (Lond) 17: 5–8. https://doi.org/10.2217/nnm-2021-0351

  10. Oyama K, Gotoh M, Hosaka Y, Oyama TG, Kubonoya A, Suzuki Y, Arai T, Tsukamoto S, Kawamura Y, Itoh H, Shintani SA, Yamazawa T, Taguchi M, Ishiwata S, Fukuda N (2020) Single-cell temperature mapping with fluorescent thermometer nanosheets. J Gen Physiol 152: e201912469. https://doi.org/10.1085/jgp.201912469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mailhot R, Traviss-Pollard T, Pal R, Butler SJ (2018) Cationic Europium Complexes for Visualizing Fluctuations in Mitochondrial ATP Levels in Living Cells. Chemistry 24: 10745–10755. https://doi.org/10.1002/chem.201801008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu X , Tang Z , Song B , Ma H , Yuan J (2017) A mitochondria-targeting time-gated luminescence probe for hypochlorous acid based on a europium complex. J Mater Chem B 5: 2849–2855. https://doi.org/10.1039/c6tb02991d

    Article  CAS  PubMed  Google Scholar 

  13. Sun J, Song B, Ye Z, Yuan J (2015) Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate-Europium Complex. Inorg Chem 54: 11660–11668. https://doi.org/10.1021/acs.inorgchem.5b02458

    Article  CAS  PubMed  Google Scholar 

  14. Walton JW, Bourdolle A, Butler SJ, Soulie M, Delbianco M, McMahon BK, Pal R, Puschmann H, Zwier JM, Lamarque L, Maury O, Andraud C, Parker D (2013) Very bright europium complexes that stain cellular mitochondria. Chem Commun (Camb) 49: 1600–1602. https://doi.org/10.1016/10.1039/c2cc35247h

  15. Smith DG, Pal R, Parker D (2012) Measuring equilibrium bicarbonate concentrations directly in cellular mitochondria and in human serum using europium/terbium emission intensity ratios. Chemistry 18: 11604–11613. https://doi.org/10.1002/chem.201201738

    Article  CAS  PubMed  Google Scholar 

  16. Pagano G, Aliberti F, Guida M, Oral R, Siciliano A, Trifuoggi M, Tommasi F (2015) Rare earth elements in human and animal health: state of art and research priorities. Environ Res 142: 215–220.

    Article  CAS  PubMed  Google Scholar 

  17. Das T, Sharma A, Talukder G (1988) Effects of lanthanum in cellular systems. A review. Biol Trace Elem Res 18: 201–228. https://doi.org/10.1007/BF02917504

    Article  CAS  PubMed  Google Scholar 

  18. Nikitchenko YV, Klochkov VK, Kavok NS, Averchenko KA, Karpenko NA, Nikitchenko IV, Yefimova SL, Bozhkov AI (2021) Anti-aging Effects of Antioxidant Rare-Earth Orthovanadate Nanoparticles in Wistar Rats. Biol Trace Elem Res 199: 4183–4192. https://doi.org/10.1007/s12011-020-02531-y

    Article  CAS  PubMed  Google Scholar 

  19. Wiatrak B, Sobierajska P, Szandruk-Bender M, Jawien P, Janeczek M, Dobrzynski M, Pistor P, Szelag A, Wiglusz RJ (2021) Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage-In Vitro Study. Int J Mol Sci 22: 4454. https://doi.org/10.3390/ijms22094454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma H, Chen K, Song B, Tang Z, Huang Y, Zhang T, Wang H, Sun W, Yuan J (2020) A visible-light-excitable mitochondria-targeted europium complex probe for hypochlorous acid and its application to time-gated luminescence bioimaging. Biosens Bioelectron 168: 112560. https://doi.org/10.1016/j.bios.2020.112560

    Article  CAS  PubMed  Google Scholar 

  21. Ma H, Wang X, Song B, Wang L, Tang Z, Luo T, Yuan J (2018) Extending the excitation wavelength from UV to visible light for a europium complex-based mitochondria targetable luminescent probe for singlet oxygen. Dalton Trans 47: 12852–12857. https://doi.org/10.1039/c8dt02829j

    Article  CAS  PubMed  Google Scholar 

  22. Divya V, Sankar V, Raghu KG, Reddy ML (2013) A mitochondria-specific visible-light sensitized europium β-diketonate complex with red emission. Dalton Trans 42: 12317–12323. https://doi.org/10.1039/c3dt51117k

    Article  CAS  PubMed  Google Scholar 

  23. Vemuri SK, Nethi SK, Banala RR, Goli PVS, Annapareddy VGR, Patra CR (2019) Europium Hydroxide Nanorods (EHNs) Ameliorate Isoproterenol-Induced Myocardial Infarction: An in Vitro and in Vivo Investigation. ACS Appl Bio Mater 2(3): 1078–1087. https://doi.org/10.1021/acsabm.8b00669

    Article  CAS  PubMed  Google Scholar 

  24. Lin YT, Liu RX, Audira G, Suryanto ME, Roldan MJM, Lee JS, Ger TR, Hsiao CD (2022) Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number. Toxics 10(6): 336. https://doi.org/10.3390/toxics10060336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci Total Environ 636: 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    Article  CAS  PubMed  Google Scholar 

  26. Liu H, Yang J, Liu Q, Jin C, Wu S, Lu X, Zheng L, Xi Q, Cai Y (2014) Lanthanum chloride impairs spatial memory through ERK/MSK1 signaling pathway of hippocampus in rats. Neurochem Res 39(12): 2479–2491. https://doi.org/10.1007/s11064-014-1452-6

    Article  CAS  PubMed  Google Scholar 

  27. Bruce DW, Hietbrink BE, Dubois KP (1963) the acute mammalian toxicity of rare earth nitrates and oxides. Toxicol Appl Pharmacol 5: 750–759. https://doi.org/10.1016/0041-008x(63)90067-x

    Article  CAS  PubMed  Google Scholar 

  28. Haley T, Komesu N, Colvin G, Koste L, Upham H (1965) Pharmacology and toxicology of europium chloride. In: Evans CH (ed) Biochemistry of the Lanthanides. Plenum Press, New York, 344–346.

    Google Scholar 

  29. Touraki M, Thomopoulos GN, Beis I (1991) Effects of calcium depletion and calcium paradox on the ultrastructure of the frog heart. J Submicrosc Cytol Pathol 23: 295–303.

    CAS  PubMed  Google Scholar 

  30. Bakeeva LE, Skulachev VP, Chencov JuS (1982) Mezhmitohondrial’nye kontakty kardiomiocitov. Citologija 2: 161–166. (In Russ).

    Google Scholar 

  31. Korotkov SM, Sobol KV, Shemarova IV, Furaev VV, Shumakov AR, Nesterov VP (2016) A comparative study of the effects of Pr3+ and La3+ ions on calcium dependent processes in frog cardiac muscle and rat heart mitochondria. Biophysics 61: 733–740. https://doi.org/10.1134/S0006350916050122

    Article  CAS  Google Scholar 

  32. Korotkov SM, Sobol KV, Schemarova IV, Furaev VV, Novozhilov AV, Nesterov VP (2019) Effects of Nd3+ on calcium-dependent processes in isolated rat heart mitochondria and frog heart muscle. Biochemistry (Moscow), Suppl A: Membr Cell Biol 13: 161–197. https://doi.org/10.1134/S1990747819070018

  33. Korotkov SM, Sobol KV, Schemarova IV, Novozhilov AV, Nikitina ER, Nesterov VP (2020) Effects of Gd3+ and Ca2+ on frog heart muscle contractility and respiration, swelling and inner membrane potential of rat heart mitochondria. J Evolut Biochem Physiol 56: 541–549. https://doi.org/10.1134/S0022093020060071

    Article  CAS  Google Scholar 

  34. Kawata H, Ohba M, Hatae J, Kishi M (1983) Paradoxical after-potentiation of the myocardial contractility by lanthanum. Jpn J Physiol 33(1): 1–17. https://doi.org/10.2170/jjphysiol.33.1

    Article  CAS  PubMed  Google Scholar 

  35. Andersson KE, Edman KA (1974) Effects of lanthanum on the coupling between membrane excitation and contraction of isolated frog muscle fibres. Acta Physiol Scand 90(1): 113–123. https://doi.org/10.1111/j.1748-1716.1974.tb05569.x

    Article  CAS  PubMed  Google Scholar 

  36. Mines GR (1910) The action of beryllium, lanthanum, yttrium and cerium on the frog’s heart. J Physiol 40(4): 327–346. https://doi.org/10.1113/jphysiol.1910.sp001373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hatae J (1982) Effects of lanthanum on the electrical and mechanical activities of frog ventricular muscle. Jpn J Physiol 32(4): 609–625. https://doi.org/10.2170/jjphysiol.32.609

    Article  CAS  PubMed  Google Scholar 

  38. Zha X, Morrison GH (1995) Ion microscopy evidence that La3+ releases Ca2+ from Golgi complex in LLC-PK1 cells. Am J Physiol 269(4 Pt 1): C923–C928. https://doi.org/10.1152/ajpcell.1995.269.4.C923

    Article  CAS  PubMed  Google Scholar 

  39. Joshi NB, Shamoo AE (1987) Binding of Eu3+ to cardiac sarcoplasmic reticulum (Ca2+Mg2+)-ATPase-laser excited Eu3+ spectroscopic studies. Biophys J 51: 185–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanel AM, Jencks WP (1990) Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change. Biochemistry 29(21): 5210–5220. https://doi.org/10.1021/bi00473a030

    Article  CAS  PubMed  Google Scholar 

  41. Kattel K, Park JY, Xu W, Bony BA, Heo WC, Tegafaw T, Kim CR, Ahmad MW, Jin S, Baeck JS, Chang Y, Kim TJ, Bae JE, Chae KS, Jeong JY, Lee GH (2013) Surface coated Eu(OH)3 nanorods: a facile synthesis, characterization, MR relaxivities and in vitro cytotoxicity. J Nanosci Nanotechnol 13(11): 7214–7219. https://doi.org/10.1166/jnn.2013.8081

    Article  CAS  PubMed  Google Scholar 

  42. Schemarova IV, Sobol KV, Korotkov SM, Nesterov VP (2014) Effect of yttrium on calcium-dependent processes in vertebrate myocardium. J Evol Biochem Physiol 50: 221–226. https://doi.org/10.1134/S0022093014030041

    Article  CAS  Google Scholar 

  43. Mitchell P, Moyle J (1969) Translocation of some anions cations and acids in rat liver mitochondria. Eur J Biochem 9: 149–155. https://doi.org/10.1136/jmg.6.4.435

    Article  CAS  PubMed  Google Scholar 

  44. Brierley GP, Jurkowitz M, Chávez E, Jung DW (1977) Energy-dependent contraction of swollen heart mitochondria. J Biol Chem 252: 7932–7939. https://doi.org/10.1016/s0021-9258(17)40914-8

    Article  CAS  PubMed  Google Scholar 

  45. Triggle DJ (1991) Calcium-channel drugs: structure-function relationships and selectivity of action. J Cardiovasc Pharmacol 18: S1–S6.

    Article  CAS  PubMed  Google Scholar 

  46. Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial Ca2+ transport mechanisms. Biochim Biophys Acta 1787: 1291–1308. https://doi.org/10.1016/j.bbabio.2008.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reed KC, Bygrave FL (1974) The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J 140: 143–155. https://doi.org/10.1042/bj1400143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsai MF, Jiang D, Zhao L, Clapham D, Miller C (2013) Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. J Gen Physiol 143: 67–73. https://doi.org/10.1085/jgp.201311096

    Article  PubMed  Google Scholar 

  49. Harris EJ, Zaba B (1977) The phosphate requirement for Ca2+-uptake by heart and liver mitochondria. FEBS Lett 79(2): 284–290. https://doi.org/10.1016/0014-5793(77)80804-1

    Article  CAS  PubMed  Google Scholar 

  50. Korotkov SM, Nesterov VP, Ryabchikov NN (2008) Study of the effect of SH-groups on respiration and swelling of rat heart mitochondria. Doklady Biochem Biophys 421: 171–175. https://doi.org/10.1134/s1607672908040030

    Article  CAS  Google Scholar 

  51. Korotkov SM, Skulskii IA, Glazunov VV (1998) Cd2+ effects on respiration and swelling of rat liver mitochondria were modified by monovalent cations. J Inorg Biochem 70: 17–23. https://doi.org/10.1016/s0162-0134(98)00008-7

    Article  CAS  PubMed  Google Scholar 

  52. Lehninger AL, Carafoli E (1971) The interaction of La3+ with mitochondria in relation to respiration-coupled Ca2+ transport. Arch Biochem Biophys 143: 506–515. https://doi.org/10.1016/0003-9861(71)90235-9

    Article  CAS  PubMed  Google Scholar 

  53. Pozzan T, Azzone GF (1976) The coupling of electrical ion fluxes in rat liver mitochondria. FEBS Lett 72: 62–66. https://doi.org/10.1016/0014-5793(76)80899-x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Brailovskaya for her help in isolating mitochondria and polarographic measurements of oxygen uptake rates by these organelles. Studies to determine the mitochondrial potential were carried out on the basis of the Center of collective usage in the IEPhB RAS.

Funding

The work was performed with the use of state budget funds under the state task no. 075-0152-22-00.

Author information

Authors and Affiliations

Authors

Contributions

S.M.K. performed planning, data collection and processing, writing and editing of the article, and investigated mitochondrial swelling. C.V.S. investigated the contractile characteristics of cardiac muscle preparations of the frog Rana ridibunda and participated in the writing of the corresponding experimental sections of the manuscript, as well as in the discussion of this work. A.V.N. investigated the inner membrane potential of energized RHM. V.P.N. participated in the introduction and discussion of the results of the article.

Corresponding author

Correspondence to S. M. Korotkov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkov, S.M., Sobol, K.V., Novozhilov, A.V. et al. Effect of Eu3+ on Calcium-Dependent Processes in Vertebrate Myocardium. J Evol Biochem Phys 58 (Suppl 1), S52–S62 (2022). https://doi.org/10.1134/S0022093022070067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022070067

Keywords:

Navigation