Skip to main content
Log in

Influence of Chronic Lead Intoxication on Functional Characteristics and Isoform Composition of Left Ventricular Myosin in the Rat Heart

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The chronic lead intoxication was modelled by injecting outbred rats intraperitoneally with lead acetate 3 times a week for 5 weeks. Using an in vitro motility assay, it was shown that lead intoxication causes changes in in vitro actin–myosin interaction, specifically, a decrease in the maximum sliding velocity of native thin filaments over myosin isolated from the left ventricular myocardium of the rat heart. No statistically significant changes were found in the calcium sensitivity and cooperativity of the “pCa–velocity” curve, characteristics of the motile filament fraction, and isometric force. Using electrophoretic separation of proteins, a shift in the ratio of myosin heavy chains toward β-chains with a lower ATPase activity was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. GBD Compare | IHME Viz Hub. https://vizhub.healthdata.org/gbd-compare/. Accessed 28 Dec 2020.

  2. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N (Nil), Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M (2018) The Lancet Commission on pollution and health. Lancet 391:462–512. https://doi.org/10.1016/S0140-6736(17)32345-0

    Article  PubMed  Google Scholar 

  3. Kim YD, Eom SY, Yim DH, Kim IS, Won HK, Park CH, Kim GB, Yu SD, Choi BS, Park JD, Kim H (2016) Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea. J Korean Med Sci 31:489. https://doi.org/10.3346/jkms.2016.31.4.489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. WHO (2019) Lead poisoning and health. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 9 Jan 2020.

  5. Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Sirajuddin A, Baig JA, Kandhro GA, Wadhwa SK, Shah AQ (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43. https://doi.org/10.1038/jhh.2009.39

    Article  CAS  PubMed  Google Scholar 

  6. Vainio H, Heseltine E, Partensky CWJ (1993) Meeting of the IARC working group on beryllium, cadmium, mercury and exposures in the glass manufacturing industry. Scand J Work Environ Health 19:360–363.

  7. Mukhacheva SV (2017) Long-term dynamics of the concentration of heavy metals in the forage and body of the bank vole (Myodes glareolus) during the period of decreasing emissions from the copper smelter. Ecology 6:461–471. (In Russ). https://doi.org/10.7868/s0367059717060087

    Article  Google Scholar 

  8. Mirzaei R (2018) Assessment of Accumulation and Human Health Risk of Trace Elements in the Vicinity of Industrial Estates, Central Iran. Arch Hyg Sci 7:118–125. https://doi.org/10.29252/archhygsci.7.2.118

    Article  Google Scholar 

  9. Nawrot TS, Thijs L, Den Hond EM, Roels HA, Staessen JA (2002) An epidemiological re-appraisal of the association between blood pressure and blood lead: A meta-analysis. J Hum Hypertens 16:123–131. https://doi.org/10.1038/sj.jhh.1001300

    Article  CAS  PubMed  Google Scholar 

  10. Kopp SJ, Bárány M, Erlanger M, Perry EF, Perry HM (1980) The influence of chronic low-level cadmium and/or lead feeding on myocardial contractility related to phosphorylation of cardiac myofibrillar proteins. Toxicol Appl Pharmacol 54:48–56. https://doi.org/10.1016/0041-008X(80)90007-1

    Article  CAS  PubMed  Google Scholar 

  11. Prentice RC, Kopp SJ (1985) Cardiotoxicity of lead at various perfusate calcium concentrations: Functional and metabolic responses of the perfused rat heart. Toxicol Appl Pharmacol 81:491–501. https://doi.org/10.1016/0041-008X(85)90420-X

    Article  CAS  PubMed  Google Scholar 

  12. Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol 2011:870125. https://doi.org/10.1155/2011/870125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. Am Heart J 168:812–822. https://doi.org/10.1016/j.ahj.2014.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamas GA, Navas-Acien A, Mark DB, Lee KL (2016) Heavy metals, cardiovascular disease, and the unexpected benefits of chelation therapy. J Am Coll Cardiol 67:2411–2418. https://doi.org/10.1016/j.jacc.2016.02.066

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ruiz-Hernandez A, Navas-Acien A, Pastor-Barriuso R, Crainiceanu CM, Redon J, Guallar E, Tellez-Plaza M (2017) Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004. Int J Epidemiol 46:1903–1912. https://doi.org/10.1093/ije/dyx176

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, Gregson J, Willeit P, Warnakula S, Khan H, Chowdhury S, Gobin R, Franco OH, Di Angelantonio E (2018) Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 362:14–16. https://doi.org/10.1136/bmj.k3310

    Article  Google Scholar 

  17. Sevim Ç, Doğan E, Comakli S (2020) Cardiovascular disease and toxic metals. Curr Opin Toxicol 19:88–92. https://doi.org/10.1016/j.cotox.2020.01.004

    Article  Google Scholar 

  18. Hoh JF, McGrath PA (1978) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10:1053–1060.

  19. Alpert NR, Brosseau C, Federico A, Krenz M, Robbins J, Warshaw DM (2002) Molecular mechanics of mouse cardiac myosin isoforms. Am J Physio—Heart Circ Physiol 283:1446–1454. https://doi.org/10.1152/ajpheart.00274.2002

    Article  Google Scholar 

  20. Shchepkin DV, Kopylova GV, Nikitina LV (2011) Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin-myosin interaction with in vitro motility assay. Biochem Biophys Res Commun 415:104–108. https://doi.org/10.1016/j.bbrc.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  21. Galler S, Puchert E, Gohlsch B, Schmid D, Pette D (2002) Kinetic properties of cardiac myosin heavy chain isoforms in rat. Pflugers Arch Eur J Physiol 445:218–223. https://doi.org/10.1007/s00424-002-0934-6

    Article  CAS  Google Scholar 

  22. Danzi S, Klein S, Klein I (2008) Differential regulation of the myosin heavy chain genes α and β in rat atria and ventricles: Role of antisense RNA. Thyroid 18:761–768. https://doi.org/10.1089/thy.2008.0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikitina LV, Kopylova GV, Shchepkin DV, Katsnelson LB (2008) Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay. Biochem 73:178–184. https://doi.org/10.1007/s10541-008-2009-6

    Article  CAS  Google Scholar 

  24. Malmqvist UP, Aronshtam A (2004) Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties. Biochemistry 43:15058–15065.

  25. Hoyer K, Krenz M, Robbins J (2007) Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy effeciency. J Mol Cell Cardiol 42:214–221. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  26. Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY (2015) Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. Biochem 80:1748–1763. https://doi.org/10.1134/S0006297915130106

    Article  CAS  Google Scholar 

  27. Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Nabiev SR, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB (2019) Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem Toxicol 125:233–241. https://doi.org/10.1016/j.fct.2018.12.054

    Article  CAS  PubMed  Google Scholar 

  28. Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB (2018) Effects of subchronic lead intoxication of rats on the myocardium contractility. Food Chem Toxicol 120:378–389. https://doi.org/10.1016/j.fct.2018.07.034

    Article  CAS  PubMed  Google Scholar 

  29. Margossian SS, Lowey S (1982) Preparation of Myosin and Its Subfragments from Rabbit Skeletal Muscle. Methods Enzymol 85:55–71. https://doi.org/10.1016/0076-6879(82)85009-X

    Article  CAS  PubMed  Google Scholar 

  30. Pardee JD, Spudich JA (1982) Purification of muscle actin. In: Methods in cell biology Methods Cell Biol 24:271–289.

  31. Potter JD (1982) Preparation of troponin and its subnits. Methods Enzymol 85:241–263.

  32. Matyushenko AM, Artemova NV, Shchepkin DV, Kopylova GV, Bershitsky SY, Tsaturyan AK, Sluchanko NN, Levitsky DI (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. FEBS J 281:2004–2016. https://doi.org/10.1111/febs.12756

    Article  CAS  PubMed  Google Scholar 

  33. Gordon AM, LaMadrid MA, Chen Y, Luo Z, Chase PB (1997) Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 72:1295–1307. https://doi.org/10.1016/S0006-3495(97)78776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spiess M, Steinmetz MO, Mandinova A, Wolpensinger B, Aebi U, Atar D (1999) Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments. J Struct Biol 126:98–104. https://doi.org/10.1006/jsbi.1999.4111

    Article  CAS  PubMed  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

  36. Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92:2199–2211. https://doi.org/10.1529/biophysj.106.081117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haeberle JR, Hemric ME, Chacko S, Pollack J, Reggiani C (1995) Are actin filaments moving under unloaded conditions in the in vitro motility assay? Biophys J 68:306–310.

  38. Reiser PJ, Kline WO (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species. Am J Physiol Circ Physiol 274:H1048–H1053. https://doi.org/10.1016/S0165-5876(00)00363-3

    Article  CAS  Google Scholar 

  39. Silva MA, de Oliveira TF, Almenara CCP, Broseghini-Filho GB, Vassallo DV, Padilha AS, Silveira EA (2015) Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle. Biol Trace Elem Res 167:280–287. https://doi.org/10.1007/s12011-015-0300-0

    Article  CAS  PubMed  Google Scholar 

  40. Fioresi M, Simões MR, Furieri LB, Broseghini-Filho GB, Vescovi MVA, Stefanon I, Vassallo DV (2014) Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS One 2014:1-9. https://doi.org/10.1371/journal.pone.0096900

    Article  CAS  Google Scholar 

  41. Reiser PJ, Portman MA, Ning XH, Moravec CS (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol - Heart Circ Physiol 280:1814–1820. https://doi.org/10.1152/ajpheart.2001.280.4.h1814

    Article  Google Scholar 

  42. Bogaard HJ, Abe K, Noordegmaf AV, Voelkel NF (2009) The right ventricle under pressure. Chest 135:794–804. https://doi.org/10.1378/chest.08-0492

    Article  CAS  PubMed  Google Scholar 

  43. Gupta MP (2007) Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 43:388–403. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA (2020) Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 136:110971. https://doi.org/10.1016/j.fct.2019.110971

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was implemented within the Governmental assignment to the Institute of Immunology and Physiology (Ural Branch of the Russian Academy of Sciences, Yekaterinburg); theme reg. Nos. АААА-А19-119070190064-4 and AAAA–A18–118020590135–3 on the institutional equipment of the Center for Collective Use.

Author information

Authors and Affiliations

Authors

Contributions

Idea and design of the experiment: L.V.N. and O.P.G.; data collection and processing: O.P.G. and S.R.N.; manuscript writing and editing: O.P.G. and L.V.N.

Corresponding author

Correspondence to O. P. Gerzen.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 6–7, pp. 854–863https://doi.org/10.31857/S0869813921060030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerzen, O.P., Nabiev, S.R. & Nikitina, L.V. Influence of Chronic Lead Intoxication on Functional Characteristics and Isoform Composition of Left Ventricular Myosin in the Rat Heart. J Evol Biochem Phys 57, 896–903 (2021). https://doi.org/10.1134/S002209302104013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302104013X

Keywords:

Navigation