Skip to main content
Log in

Investigations of Molecular Mechanisms of Actin–Myosin Interactions in Cardiac Muscle

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed–two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin–myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin–myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOD:

acousto-optical deflector

A7TmTn:

a regulatory group consisting of seven G-actin molecules, one tropomyosin molecule, and one troponin molecule

CaTnC:

calcium–troponin complex

CaTnC–CaTnC:

troponin–troponin cooperativity

F-actin:

filamentary actin

G-actin:

globular actin

HMM:

heavy meromyosin

LMM:

light meromyosin

MHC:

myosin heavy chains

NEM:

N-ethylmaleimide

pCa:

negative decimal logarithm of calcium concentration

pCa50 :

the calcium concentration corresponding to half-maximum of the sliding velocity or of the force (calcium sensitivity)

S1:

subfragment 1, or myosin molecule head

S2:

subfragment 2, or rod of heavy meromyosin

Tm:

tropomyosin

TnC:

troponin C

TnI:

troponin I

TnT:

troponin T

V max :

maximal velocity of muscle shortening

Xb:

cross-bridge

Xb–CaTnC:

bridge–troponin cooperativity.

References

  1. Hoh, J. F. Y., McGrath, P. A., and Hale, P. (1977) Electrophoretic analysis of multiple forms of rat cardiac myosin: effect of hypophysectomy and thyroxin replace-ment, J. Mol. Cell Cardiol., 10, 1053–1076.

    Article  Google Scholar 

  2. Vandekerckhove, J., Bugaisky, G., and Buckingham, M. (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin iso-forms, J. Biol. Chem., 261, 1838–1843.

    PubMed  CAS  Google Scholar 

  3. Perry, S. V. (2001) Vertebrate tropomyosin: distribution, properties and function, J. Muscle Res. Cell. Motil., 22, 5–49.

    Article  PubMed  CAS  Google Scholar 

  4. Karam, C. N., Warren, C. M., Rajan, S., De Tombe, P. P., Wieczorek, D. F., and Solaro, R. J. (2011) Expression of tropomyosin-κ induces dilated cardiomyopathy and depresses cardiac myofilament tension by mechanisms involving cross-bridge dependent activation and altered tropomyosin phosphorylation, J. Muscle Res. Cell. Motil., 31, 315–322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rajan, S., Jagatheesan, G., Karam, C. N., Alves, M. L., Bodi, I., Schwartz, A., Bulcao, C. F., D’Souza, K. M., Akhter, S. A., Boivin, G. P., Dube, D. K., Petrashevskaya, N., Herr, A. B., Hullin, R., Liggett, S. B., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2010) Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform, Circulation, 121, 410–418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Boussouf, S. E., Maytum, R., Jaquet, K., and Geeves, M. A. (2007) Role of tropomyosin isoforms in the calcium sen-sitivity of striated muscle thin filaments, J. Muscle Res. Cell. Motil., 28, 49–58.

    Article  PubMed  CAS  Google Scholar 

  7. Izumo, S., Nadal-Ginard, B., and Mahdavi, V. (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload, Proc. Natl. Acad. Sci. USA, 85, 339–343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., Benaiche, A., Isnard, R., Dubourg, O., Burban, M., Gueffet, J. P., Millaire, A., Desnos, M., Schwartz, K., Hainque, B., and Komajda, M. (2003) EUROGENE Heart Failure Project. Hypertrophic car-diomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strat-egy, Circulation, 107, 2227–2232.

    Article  PubMed  Google Scholar 

  9. Rajan, S., Ahmed, R. P., Jagatheesan, G., Petrashevskaya, N., Boivin, G. P., Urboniene, D., Arteaga, G. M., Wolska, B. M., Solaro, R. J., Liggett, S. B., and Wieczorek, D. F. (2007) Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity, Circ. Res., 101, 205–214.

    Article  PubMed  CAS  Google Scholar 

  10. Sheehan, K. A., Arteaga, G. M., Hinken, A. C., Dias, F. A., Ribeiro, C., Wieczorek, D. F., Solaro, R. J., and Wolska, B. M. (2011) Functional effects of a tropomyosin mutation linked to FHC contribute to maladaptation dur-ing acidosis, J. Mol. Cell. Cardiol., 50, 442–450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Konno, T., Chang, S., Seidman, J. G., and Seidman, C. E. (2010) Genetics of hypertrophic cardiomyopathy, Curr. Opin. Cardiol., 25, 205–209.

    Article  PubMed  Google Scholar 

  12. Lowey, C., and Cohen, C. (1962) Studies on the structure of myosin, J. Mol. Biol., 4, 293–307.

    Article  PubMed  CAS  Google Scholar 

  13. Pope, B., Hoh, J. F. Y., and Weeds, A. (1980) The ATPase activities of rat cardiac myosin isoenzymes, FEBS Lett., 118, 205–208.

    Article  PubMed  CAS  Google Scholar 

  14. Narolska, N. A., Eiras, S., Van Loon, R. B., Boontje, N. M., Zaremba, R. S., Berg, S. R., Stooker, W., Huybregts, M. A., Visser, F. C., Van der Velden, J., and Stienen, G. J. (2005) Myosin heavy chain composition and the economy of contraction in healthy and diseased human myocardium, J. Muscle Res. Cell. Motil., 26, 39–48.

    Article  PubMed  CAS  Google Scholar 

  15. Chizzonite, R. A., Everett, A. W., Prior, G., and Zak, R. (1984) Comparison of myosin heavy chains in atria and ventricles from hyperthyroid, hypothyroid, and euthyroid rabbits, J. Biol. Chem., 259, 15564–15571.

    PubMed  CAS  Google Scholar 

  16. Alpert, N. R., Brosseau, C., Federico, A., Krenz, M., Robbins, J., and Warshaw, D. M. (2002) Molecular mechanics of mouse cardiac myosin isoforms, Am. J. Physiol. Heart Circ. Physiol., 283, 1446–1454.

    Article  Google Scholar 

  17. Krenz, M., Sanbe, A., Bouyer-Dalloz, F., Gulick, J., Klevitsky, R., Hewett, T. E., Osinska, H. E., Lorenz, J. N., Brosseau, C., Federico, Alpert, N. R., Warshaw, D. M., Perryman, M. B., Helmke, S. M., and Robbins, J. (2003) Analysis of myosin heavy chain functionality in the heart, J. Biol. Chem., 278, 17466–17474.

    Article  PubMed  CAS  Google Scholar 

  18. Krenz, M., Sadayappan, S., Osinska, H. E., Henry, J. A., Beck, S., Warshaw, D. M., and Robbins, J. (2007) Distribution and structure–function relationship of myosin heavy chain isoforms in the adult mouse heart, J. Biol. Chem., 282, 24057–24064.

    Article  PubMed  CAS  Google Scholar 

  19. Schmitt, J. P., Debold, E. P., Ahmad, F., Armstrong, A., Frederico, A., Conner, D. A., Mende, U., Lohse, M. J., Warshaw, D., Seidman, C. E., and Seidman, J. G. (2006) Cardiac myosin missense mutations cause dilated car-diomyopathy in mouse models and depress molecular motor function, Proc. Natl. Acad. Sci. USA, 103, 14525–14530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G., and Warshaw, D. M. (2000) Single-mole-cule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy, Circ. Res., 86, 737–744.

    Article  PubMed  CAS  Google Scholar 

  21. Banerjee, S. K., Kabbas, E. G., and Morkin, E. (1977) Enzymatic properties of the heavy meromyosin subfrag-ment of cardiac myosin from normal and thyrotoxic rab-bits, J. Biol. Chem., 252, 6925–6929.

    PubMed  CAS  Google Scholar 

  22. VanBuren, P., Harris, D. E., Norman, R. A., and Warshaw, D. M. (1995) Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro, Circ. Res., 77, 439–444.

    Article  PubMed  CAS  Google Scholar 

  23. Malmqvist, U. P., Aronsham, A., and Lowey, S. (2004) Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties, Biochemistry, 43, 15058–15065.

    Article  PubMed  CAS  Google Scholar 

  24. Litten, R. Z., Martin, B. J., Low, R. B., and Alpert, N. R. (1982) Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts, Circ. Res., 50, 856–864.

    Article  PubMed  CAS  Google Scholar 

  25. Yamashita, H., Sugiura, S., Serizawa, T., Sugimoto, T., Iizuka, M., Katayama, E., and Shimmen, T. (1992) Sliding velocity of isolated rabbit cardiac myosin correlates with isozyme distribution, Am. J. Physiol., 263, 464–472.

    Google Scholar 

  26. Banerjee, S. K., and Morkin, E. (1977) Actin-activated adenosine triphosphatase activity of native and N-ethyl-maleimide-modified cardiac myosin from normal and thy-rotoxic rabbits, Circ. Res., 41, 630–634.

    Article  PubMed  CAS  Google Scholar 

  27. Barany, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening, J. Gen. Physiol., 50, 197.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maughan, D., Low, E., Litten, R., Brayden, J., and Alpert, N. (1979) Calcium-activated muscle from hypertrophied rabbit hearts. Mechanical and correlated biochemical changes, Circ. Res., 44, 279–287.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz, K., Lecarpentier, Y., Martin, J. L., Lompre, A. M., Mercadier, J. J., and Swynghedauw, B. (1981) Myosin isozymic distribution correlates with speed of myocardial contraction, J. Mol. Cell. Cardiol., 13, 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  30. Pagani, E. D., and Julian, F. J. (1984) Rabbit papillary muscle myosin isozymes and the velocity of muscle short-ening, Circ. Res., 54, 586–594.

    Article  PubMed  CAS  Google Scholar 

  31. Saeki, Y. (1995) Crossbridge dynamics under various inotropic states in cardiac muscle: evaluation by perturba-tion analysis, Jpn. J. Physiol., 45, 687–705.

    Article  PubMed  CAS  Google Scholar 

  32. Stehle, M., Kruger, P., Scherer, K., Brixius, R. H., Schwinger, G., and Pfitzer, G. (2002) Isometric force kinetics upon rapid activation and relaxation of mouse, guinea pig, and human heart muscle studied on the subcel-lular myofibrillar level, Basic Res. Cardiol., 97, 127–135.

    Article  Google Scholar 

  33. Fitzsimons, D. P., Patel, J. R., and Moss, R. L. (1999) Aging dependent depression in the kinetics of force devel-opment in rat skinned myocardium, Am. J. Physiol., 276, 1511–1519.

    Google Scholar 

  34. Alpert, N. R., Mulieri, L. A., and Hasenfuss, G. (1991) The Heart and Cardiovascular System, Raven Press, New York, pp. 111–128.

    Google Scholar 

  35. Gordon, A. M., Homsher, E., and Regnier, M. (2000) Regulation of contraction in striated muscle, Physiol. Rev., 80, 853–924.

    PubMed  CAS  Google Scholar 

  36. Gordon, A. M., Regnier, M., and Homsher, E. (2001) Skeletal and cardiac muscle contractile activation: tropomyosin “rocks and rolls”, News Physiol. Sci., 16, 49–55.

    PubMed  CAS  Google Scholar 

  37. McKillop, D. F., and Geeves, M. A. (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J., 65, 693–701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pirani, A., Vinogradova, M. V., Curmi, P. M. G., King, W. A., Fletterick, R. J., Craig, R., Tobacman, L. S., Xu, C., Hatch, V., and Lehman, W. (2006) An atomic model of the thin filament in the relaxed and Ca2+-activated states, J. Mol. Biol., 357, 707–717.

    Article  PubMed  CAS  Google Scholar 

  39. Donaldson, S. K., and Kerrick, W. G. (1975) Characterization of the effects of Mg2+ on Ca2+ and Sr2+-activated tension generation of skinned skeletal muscle fibers, J. Gen. Physiol., 66, 427–444.

    Article  PubMed  CAS  Google Scholar 

  40. Grabarek, Z., Grabarek, J., Leavis, P. C., and Gergely, J. (1983) Cooperative binding to the Ca-specific sites of tro-ponin C in regulated actin and actomyosin, J. Biol. Chem., 258, 14098–14102.

    PubMed  CAS  Google Scholar 

  41. Brandt, P. W., Diamond, M. S., Rutchik, J. S., and Schachat, F. H. (1987) Cooperative interactions between troponin-tropomyosin units extend the length of the thin filament in skeletal muscle, J. Mol. Biol., 195, 885–896.

    Article  PubMed  CAS  Google Scholar 

  42. Brandt, P. W., Colomo, F., Piroddi, N., Poggesi, C., and Tesi, C. (1998) Force regulation by Ca2+ in skinned single cardiac myocytes of frog, Biophys. J., 74, 1994–2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tsaturyan, A. K., Bershitsky, S. Y., Koubassova, N. A., Fernandez, M., Narayanan, T., and Ferenczi, M. A. (2011) The fraction of myosin motors that participates in isomet-ric contraction of rabbit muscle fibers at near-physiological temperature, Biophys. J., 101, 404–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Linari, M., Caremani, M., and Lombardi, V. (2007) Stiffness and fraction of myosin motors responsible for active force in permeabilized muscle fibers from rabbit psoas, Biophys. J., 92, 2476–2490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Linari, M., Dobbie, I., and Lombardi, V. (1998) The stiff-ness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin, Biophys. J., 74, 2459–2473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wu, S., Liu, J., Reedy, M. C., Tregear, R. T., Winkler, H., Franzini-Armstrong, C., Sasaki, H., Lucaveche, C., Goldman, Y. E., Reedy, M. K., and Taylor, K. A. (2010) Electron tomography of cryofixed, isometrically contract-ing insect flight muscle reveals novel actin–myosin interac-tions, PLoS One, 5, e12643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang, Y., and Kerrick, W. G. L. (2002) The off rate of Ca2+ from troponin C is regulated by force-generating cross bridges in skeletal muscle, J. Appl. Physiol., 92, 2409–2418.

    Article  PubMed  CAS  Google Scholar 

  48. Turtle, C. W., Korte, F. S., Razumova, M. V., and Regnier, M. (2011) Reducing thin filament Ca2+ affinity with a CaTnC variant (L57Q) reduces force but enhances cross-bridge dependence of cooperative activation in demem-branated rat trabeculae, Biophys. J., 100, 453a–453a.

    Article  Google Scholar 

  49. Godt, R. E., and Maughan, W. M. (1995) Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit, Pflugers Arch., 391, 334–337.

    Article  Google Scholar 

  50. McDonald, K. S., and Moss, R. L. (1995) Osmotic com-pression of single cardiac myocytes eliminates the reduc-tion in Ca2+ sensitivity of tension at short sarcomere length, Circ. Res., 77, 199–205.

    Article  PubMed  CAS  Google Scholar 

  51. Fuchs, F., and Wang, Y. P. (1996) Sarcomere length versus interfilament spacing as determinants of cardiac myofila-ment Ca2+ sensitivity and Ca2+ binding, J. Mol. Cell. Cardiol., 28, 1375–1383.

    Article  PubMed  CAS  Google Scholar 

  52. Smith, S. H., and Fuchs, F. (2002) Length dependence of cardiac myofilament Ca2+ sensitivity in the presence of sub-stitute nucleoside triphosphates, J. Mol. Cell. Cardiol., 34, 547–554.

    Article  PubMed  CAS  Google Scholar 

  53. Moss, R. L., Razumova, M., and Fitzsimons, D. P. (2004) Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease, Circ. Res., 94, 1290–1300.

    Article  PubMed  CAS  Google Scholar 

  54. Fuchs, F., and Martyn, D. (2005) Length-dependent Ca2+ activation in cardiac muscle: some remaining questions, J. Muscle Res. Cell. Motil., 26, 199–212.

    Article  PubMed  CAS  Google Scholar 

  55. Izakov, V., Katsnelson, L. B., Blyakhman, F. A., Markhasin, V. S., and Shklyar, T. F. (1991) Cooperative effects due to calcium binding by troponin and their conse-quences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading, Circ. Res., 69, 1171–1184.

    Article  PubMed  CAS  Google Scholar 

  56. Solovyova, O., Katsnelson, L. B., Konovalov, P., Lookin, O., Moskvin, A. S., Protsenko, Yu. L., Vikulova, N., Kohl, P., and Markhasin, V. S. (2006) Activation sequence as a key factor in spatio-temporal optimization of myocardial function, Phil. Transact. R. Soc. London, 364, 1367–1383.

    Article  CAS  Google Scholar 

  57. Allen, D. G., and Kurihara, S. (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle, J. Physiol., 327, 79–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lab, M. J. (1982) Contraction-excitation feedback in myocardium. Physiological basis and clinical relevance, Circ. Res., 50, 757–766.

    Article  PubMed  CAS  Google Scholar 

  59. Lab, M. J., Allen, D. G., and Orchard, C. (1984) The effects of shortening on myoplasmic calcium concentration and on the action potential in mammalian ventricular mus-cle, Circ. Res., 55, 825–829.

    Article  PubMed  CAS  Google Scholar 

  60. Vahl, C. F., Timek, T., Bonz, A., Fuchs, H., Dillman, R., and Hagl, S. (1998) Length dependence of calcium-and force-transients in normal and failing human myocardium, J. Mol. Cell., 30, 957–966.

    CAS  Google Scholar 

  61. Ishikava, T., Kajiwara, H., and Kurihara, S. (1999) Modulation of Ca2+ transient decay by tension and Ca2+ removal in hyperthyroid myocardium, Am. J. Physiol. Heart Circ. Physiol., 276, 289–299.

    Google Scholar 

  62. Wakayama, Y., Miura, M., Sugai, Y., Kagaya, Y., Watanabe, J., Ter Keurs, H. E. D. J., and Shirato, K. (2001) Stretch and quick release of rat cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions, Am. J. Physiol. Heart Circ. Physiol., 281, 2133–2142.

    Google Scholar 

  63. Luers, C., Fialka, F., Elgner, A., Zhu, D., Kockskampe, J., von Lewinski, D., and Pieske, B. (2005) Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardi-um − a mechanism for the slow force response, Cardiovasc. Res., 68, 454–463.

    Article  PubMed  CAS  Google Scholar 

  64. Monasky, M. M., Varian, K. D., Davis, J. P., and Janssen, P. M. L. (2008) Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium, Pflugers Arch., 456, 267–276.

    Article  PubMed  CAS  Google Scholar 

  65. Ter Keurs, H. E. D. G. (2011) Electromechanical coupling in the cardiac myocyte; stretch-arrhythmia feedback, Pflugers Arch., 462, 165–175.

    Article  PubMed  CAS  Google Scholar 

  66. Ruwhof, C., Van Wamel, J. T., Noordzij, L. A., Aydin, S., Harper, J. C., and Van der Laarse, A. (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes, Cell. Calcium, 29, 73–83.

    Article  PubMed  CAS  Google Scholar 

  67. Yasuda, S., Sugiura, S., Yamashita, H., Nishimura, S., Saeki, Y., Momomura, S., Katoh, K., Nagai, R., and Sugi, H. (2003) Unloaded shortening increases peak of Ca2+ transients but accelerates their decay in rat single cardiac myocytes, Am. J. Physiol. Heart Circ. Physiol., 285, 470–475.

    Article  Google Scholar 

  68. Sulman, T., Katsnelson, L. B., Solovyova, O., and Markhasin, V. S. (2008) Mathematical modeling of mechanically modulated rhythm disturbances in homoge-neous and heterogeneous myocardium with attenuated activity of Na+-K+ pump, Bull. Math. Biol., 70, 910–949.

    Article  PubMed  CAS  Google Scholar 

  69. Katsnelson, L. B., Solovyova, O., Balakin, A., Lookin, O., Konovalov, P., Protsenko, Yu., Sulman, T., and Markhasin, V. S. (2011) Contribution of mechanical factors to arryth-mogenesis in calcium overloaded cardiomyocytes: model predictions and experiments, Progr. Bioph. Mol. Biol., 107, 81–89.

    Article  CAS  Google Scholar 

  70. Edman, K. A., and Nilsson, P. E. (1972) Relationships between force and velocity of shortening in rabbit papillary muscle, Acta Physiol. Scand., 85, 488–500.

    Article  PubMed  CAS  Google Scholar 

  71. Metzger, J. M., Wahr, P. A., Michele, D. E., Albayya, F., and Westfall, M. V. (1999) Effects of myosin heavy chain isoform switching on Ca2+-activated tension development in single adult cardiac myocytes, Circ. Res., 11, 1310–1317.

    Article  Google Scholar 

  72. Fitzsimons, D. P., Patel, J. R., and Moss, R. L. (1998) Role of myosin heavy chain composition in kinetics of force development and relaxation in rat myocardium, J. Physiol., 513, 171–183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rundell, V. L., Manaves, V., Martin, A. F., and De Tombe, P. P. (2005) Impact of β-myosin heavy chain isoform expression on cross-bridge cycling kinetics, Am. J. Physiol. Heart Circ. Physiol., 288, 896–903.

    Article  CAS  Google Scholar 

  74. Ashkin, A., and Dziedzic, J. M. (1987) Optical trapping and manipulation of viruses and bacteria, Science, 235, 1517–1520.

    Article  PubMed  CAS  Google Scholar 

  75. Finer, J. T., Simmons, R. M., and Spudich, J. A. (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps, Nature, 368, 113–118.

    Article  PubMed  CAS  Google Scholar 

  76. Nabiev, S. R., Ovsyannikov, D. A., Bershitsky, B. Y., and Bershitsky, S. Y. (2008) Optical trap as a tool for studying motor proteins, Biophysics, 53, 488–493.

    Article  Google Scholar 

  77. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T., and White, D. C. S. (1995) Movement and force pro-duced by a single myosin head, Nature, 378, 209–212.

    Article  PubMed  CAS  Google Scholar 

  78. Takagi, Y., Homsher, E. E., Goldman, Y. E., and Shuman, H. (2006) Force generation in single conventional acto-myosin complexes under high dynamic load, Biophys. J., 90, 1295–1307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sugiura, S., Kobayakawa, N., Fujita, H., Yamashita, H., Momomura, S., Chaen, S., Omata, M., and Sugi, H. (1998) Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap tech-nique: molecular basis for cardiac adaptation, Circ. Res., 82, 1029–1034

    Article  PubMed  CAS  Google Scholar 

  80. Palmiter, K. A., Tyska, M. J., Dupius, D. E., Alpert, N. R., and Warshaw, D. M. (1999) Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms, J. Physiol., 519, 669–678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nabiev, S. R., Schepkin, D. V., Kopylova, G. V., and Bershitsky, S. Y. (2012) Comparison of the characteristics of the single interactions of rabbit muscle proteins isoforms, in Biological Motility: Fundamental and Applied Science [in Russian], Pushchino, pp. 138-140.

  82. Nikitina, L. V., Kopylova, G. V., Shchepkin, D. V., and Katsnelson, L. V. (2008) Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay, Biochemistry (Moscow), 73, 178–184.

    Article  CAS  Google Scholar 

  83. Kron, S. J., and Spudich, J. A. (1986) Fluorescent actin fil-aments move on myosin fixed to a glass surface, Proc. Natl. Acad. Sci. USA, 83, 6272–6276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mashanov, G. I., and Molloy, J. E. (2007) Automatic detec-tion of single fluorophores in live cells, Biophys. J., 92, 2199–2211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sugiura, S., Yamashita, H., Sata, M., Momomura, S., Serizawa, T., Oiwa, K., Chaen, S., Shimmen, T., and Sugi, H. (1995) Force–velocity relations of rat cardiac myosin isozymes sliding on algal cell actin cables in vitro, Biochim. Biophys. Acta, 1231, 69–75.

    Article  PubMed  Google Scholar 

  86. Bing, W., Knott, A., and Marston, S. (2000) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments, Biochem. J., 350, 693–699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Haeberle, J. R., and Hemric, M. E. (1995) Are actin fila-ments moving under unloaded conditions in the in vitro motility assay? Biophys. J., 68, 306–310.

    Google Scholar 

  88. VanBuren, P., Alix, S. L., Gorga, J. A., Begin, K. J., Le Winter, M. M., and Alpert, N. R. (2002) Cardiac tro-ponin T isoforms demonstrate similar effects on mechani-cal performance in a regulated contractile system, Am. J. Physiol. Heart Circ. Physiol., 282, 1665–1671.

    Article  Google Scholar 

  89. Nikitina, L. V., Kopylova, G. V., Shchepkin, D. V., and Katsnelson, L. B. (2008) Assessment of the mechanical activity of cardiac myosins V1 and V3 by the in vitro motil-ity assay with regulated thin filament, Biophysics, 53, 510–514.

    Article  Google Scholar 

  90. Kopylova, G. V., Katsnelson, L. B., Ovsyannikov, D. A., Bershitsky, S. Yu., and Nikitina, L. V. (2006) Application of in vitro motility assay to studying the calcium-mechani-cal relationship in skeletal and cardiac muscles, Biophysics, 51, 687–691.

    Article  Google Scholar 

  91. Gordon, A. M., LaMadrid, M. A., Chen, Y., Luo, Z., and Chase, P. B. (1997) Calcium regulation of skeletal muscle thin filament motility in vitro, Biophys. J., 72, 1295–1307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Homsher, E., Kim, B., Bobkova, A., and Tobacman, L. S. (1996) Calcium regulation of thin filament movement in an in vitro motility assay, Biophys. J., 70, 1881–1892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Honda, H., and Asakura, S. (1989) Calcium-triggered movement of regulated actin in vitro. A fluorescence microscopy study, J. Mol. Biol., 205, 677–683.

    Article  PubMed  CAS  Google Scholar 

  94. Dyer, E. C., Jacques, A. M., Hoskins, A. C., Ward, D. G., Gallon, C. E., Messer, A. E., Kaski, J. P., Burch, M., Kentish, J. C., and Marston, S. B. (2009) Functional analysis of a unique troponin C mutation, GLY159ASP, that causes familial dilated cardiomyopathy, studied in explanted heart muscle, Circ. Heart Fail., 2, 456–464.

    Article  PubMed  CAS  Google Scholar 

  95. Song, W., Dyer, E., Stuckey, D., Leung, M. C., Memo, M., Mansfield, C., Ferenczi, M., Liu, K., Redwood, C., Nowak, K., Harding, S., Clarke, K., Wells, D., and Marston, S. (2010) Investigation of a transgenic mouse model of familial dilated cardiomyopathy, J. Mol. Cell. Cardiol., 49, 380–389.

    Article  PubMed  CAS  Google Scholar 

  96. Funatsu, T., Anazawa, T., and Ishiwata, S. (1994) Structural and functional reconstitution of thin filaments in skeletal muscle, J. Muscle Res. Cell Motil., 15, 158–171.

    Article  PubMed  CAS  Google Scholar 

  97. Fujita, H., Yasuda, K., Niitsu, S., Funatsu, T., and Ishiwata, S. (1996) Structural and functional reconstitu-tion of thin filaments in the contractile apparatus of car-diac muscle, Biophys. J., 71, 2307–2318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sata, M., Yamashita, H., Sugiura, S., Fujita, H., Momomura, S., and Serizawa, T. (1995) A new in vitro motility assay technique to evaluate calcium sensitivity of the cardiac contractile proteins, Pflugers Arch., 429, 443–445.

    Article  PubMed  CAS  Google Scholar 

  99. Shaffer, J. F., Razumova, M. V., Tu, A. Y., Regnier, M., and Harris, S. P. (2007) Myosin S2 is not required for effects of myosin binding protein-C on motility, FEBS Lett., 581, 1501–1504.

    Article  PubMed  CAS  Google Scholar 

  100. Shchepkin, D. V., Kopylova, G. V., Nikitina, L. V., Katsnelson, L. B., and Bershitsky, S. Y. (2010) Effects of cardiac myosin binding protein-C on the regulation of interaction of cardiac myosin with thin filament in an in vitro motility assay, Biochem. Biophys. Res. Commun., 401, 159–163.

    Article  PubMed  CAS  Google Scholar 

  101. Sugiura, S., and Yamashita, H. (1998) Functional charac-terization of cardiac myosin isoforms, Jpn. J. Physiol., 48, 173–179.

    Article  PubMed  CAS  Google Scholar 

  102. Fraser, I. D., and Marston, S. B. (1995) In vitro motility analysis of actin–tropomyosin regulation by troponin and calcium, J. Biol. Chem., 270, 7836–7841.

    Article  PubMed  CAS  Google Scholar 

  103. Lu, X., Tobacman, L. S., and Kawai, M. (2006) Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant, Biophys. J., 91, 4230–4240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Landis, C., Back, N., Homsher, E., and Tobacman, L. S. (1999) Effects of tropomyosin internal deletions on thin filament function, J. Biol. Chem., 274, 1279–31285.

    Article  Google Scholar 

  105. Matyushenko, A. M., Artemova, N. V., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., Tsaturyan, A. K., Sluchanko, N. N., and Levitsky, D. I. (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule, FEBS J., 281, 2004–2016.

    Article  PubMed  CAS  Google Scholar 

  106. Shchepkin, D. V., Matyushenko, A. M., Kopylova, G. V., Artemova, N. V., Bershitsky, S. Y., Tsaturyan, A. K., and Levitsky, D. I. (2013) Stabilization of the central part of tropomyosin molecule alters the Ca2+-sensitivity of actin–myosin interaction, Acta Naturae, 5, 126–129.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Noguchi, T., Camp, P. Jr., Alix, S. L., Gorga, J. A., Begin, K. J., Leavitt, B. J., Ittleman, F. P., Alpert, N. R., LeWinter, M. M., and Van Buren, P. (2003) Myosin from failing and non-failing human ventricles exhibit similar contractile properties, J. Mol. Cell. Cardiol., 35, 91–97.

    Article  PubMed  CAS  Google Scholar 

  108. Bottinelli, R., Coviello, D. A., Redwood, C. S., Pellegrino, M. A., Maron, B. J., Spirito, P., Watkins, H., and Reggiani, C. (1998) A mutant tropomyosin that caus-es hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity, Circ. Res., 82, 106–115.

    Article  PubMed  CAS  Google Scholar 

  109. De Clerck, N. M., Claes, V. A., and Brutsaert, D. L. (1977) Force–velocity relations of single cardiac muscle cells: calcium dependency, J. Gen. Physiol., 69, 221–241.

    Article  PubMed  Google Scholar 

  110. Katsnelson, L. B., Markhasin, V. S., Nikitina, L. V., and Ryvkin, M. V. (1997) Analysis of force–velocity relation-ship in cardiac muscle by means of mathematical model-ing, J. Muscle Res. Cell Motil., 8, 228.

    Google Scholar 

  111. Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. London, 126, 136–195.

    Article  Google Scholar 

  112. Hennekes, R., Kaufmann, R., and Steiner, R. (1978) Why does the cardiac force–velocity relationship not follow a Hill hyperbola? Possible implications of feedback loops involved in cardiac excitation–contraction coupling, Basic Res. Cardiol., 73, 47–67.

    Article  PubMed  CAS  Google Scholar 

  113. Katsnelson, L. B., Nikitina, L. V., Chemla, D., Solovyova, O. E., Coirault, C., Lecarpentier, Y., and Markhasin, V. S. (2004) Influence of viscosity on myocardium mechanical activity: a mathematical model, J. Theor. Biol., 230, 385–405.

    Article  PubMed  Google Scholar 

  114. Muthuchamy, M., Boivin, G. P., Grupp, I. L., and Wieczorek, D. F. (1998) Beta-tropomyosin overexpression induces severe cardiac abnormalities, J. Mol. Cell. Cardiol., 30, 1545–1557.

    Article  PubMed  CAS  Google Scholar 

  115. Muthuchamy, M., Grupp, I. L., Grupp, G., O’Toole, B. A., Kier, A. B., Boivin, G. P., Neumann, J., and Wieczorek, D. F. (1995) Molecular and physiological effects of overexpressing striated muscle β-tropomyosin in the adult murine heart, J. Biol. Chem., 270, 30593–30603.

    Article  PubMed  CAS  Google Scholar 

  116. Shchepkin, D. V., Kopylova, G. V., and Nikitina, L. V. (2011) Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin–myosin interaction with in vitro motility assay, Biochem. Biophys. Res. Commun., 415, 104–108.

    Article  PubMed  CAS  Google Scholar 

  117. Chen, W., Wen, K. K., Sens, A. E., and Rubenstein, P. A. (2006) Differential interaction of cardiac, skeletal muscle, and yeast tropomyosins with fluorescent (pyrene235) yeast actin, Biophys. J., 90, 1308–1318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sliwinska, M., Zukowska, M., Borys, D., and Moraczewska, J. (2011) Different positions of tropomyosin isoforms on actin filament are determined by specific sequences of end-to-end overlaps, Cytoskeleton (Hoboken), 68, 300–312.

    Article  CAS  Google Scholar 

  119. Ajtai, K., Halstead, M. F., Nyitrai, M., Penheiter, A. R., Zheng, Y., and Burghardt, T. P. (2009) The myosin C-loop is an allosteric actin contact sensor in actomyosin, Biochemistry, 48, 5263–5275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Nikitina, L. V., Shchepkin, D. V., and Kopylova, G. V. (2014) Study of effects of tropomyosin isoforms on the reg-ulation of actin–myosin interaction in myocardium with in vitro motility assay, J. Muscle Res. Cell. Motil., 35, 147.

    Google Scholar 

  121. Lompre, A. M., Schwartz, K., D’Albis, A., Lacombe, G., Van Thiem, N., and Swynghedauw, B. (1979) Myosin isoenzyme redistribution in chronic heart overload, Nature, 282, 105–107.

    Article  PubMed  CAS  Google Scholar 

  122. Katz, A. M. (2001) Physiology of the Heart, Lippincott, Williams and Wilkins.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Nikitina.

Additional information

Original Russian Text © L. V. Nikitina, G. V. Kopylova, D. V. Shchepkin, S. R. Nabiev, S. Y. Bershitsky, 2015, published in Uspekhi Biologicheskoi Khimii, 2015, Vol. 55, pp. 255-288.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, L.V., Kopylova, G.V., Shchepkin, D.V. et al. Investigations of Molecular Mechanisms of Actin–Myosin Interactions in Cardiac Muscle. Biochemistry Moscow 80, 1748–1763 (2015). https://doi.org/10.1134/S0006297915130106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915130106

Key words

Navigation