Skip to main content
Log in

The Effect of Hypothermia on Phospholipid and Fatty Acid Composition of Synaptic Membranes in the Rat Brain

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effect of moderate and deeper hypothermia on the phospholipid (PL) and fatty acid (FA) composition of synaptic membranes (synaptosomes) in the rat brain was investigated. As hypothermia deepened, phosphatidylcholine (PC) and phosphatidylserine (PS) levels decreased while those of phosphatidylethanolamine (PEA) remained intact. We attribute the differences both to a peculiar localization of these PL in the synaptic membrane and to a specificity of their function. Under hypothermal exposure, the saturated FA (SFA) level in the FA repertoire of total synaptosomal PL slightly decreased (by 9%) while that of polyunsaturated FA (PUFA) considerably increased, leading to a rise in the lipid unsaturation index (LUI) (by 47%) and promoting the maintenance of synaptic membrane fluidity. For three basic PL (PC, PS and PEA), the tendency was opposite: the SFA level increased while that of PUFA decreased, leading to a fall in the LUI and promoting a higher packing order of PL within the synaptic membrane. In the FA repertoire of the plasmalogen form of PEA (p-PEA), enforced hypothermia led to elevated levels both of SFA and PUFA as well as to a particularly high LUI, typical for this PL. These changes are supposed to be aimed at maintaining optimal membrane fluidity. We consider all the observed changes in lipid characteristics as adaptive, allowing the synaptic function in homeotherms to be supported as body temperature falls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowhan, W., Bogdanov, M., and Mileykovskaya, E., Functional roles of lipids in membranes, Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E., Eds., Elsevier, 2008, chapter 1, pp. 1–39.

    Google Scholar 

  2. Berridge, M.J., The inositol trisphosphate/calcium signaling pathway in health and disease, Physiol. Rev., 2016, vol. 96, pp. 1261–1296.

    Article  PubMed  CAS  Google Scholar 

  3. Vance, J.E., Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids, J. Lipid Res., 2008, vol. 49, pp. 1377–1387.

    Article  PubMed  CAS  Google Scholar 

  4. Fajardo, V.A., McMeekin, L., and LeBlanc, P.J., Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index, J. Membrane Biol., 2011, vol. 244, pp. 97–103.

    Article  CAS  Google Scholar 

  5. Kreps, E.M., Lipidy kletochnykh membran: Evolyutsiya lipidov mozga. Adaptatsionnaya funktsiya lipidov (Lipids of Cell Membranes: Evolution of Cerebral Lipids. Adaptational Function of Lipids), Leningrad, 1981.

    Google Scholar 

  6. Hazel, J.R., Thermal adaptation in biological membrane: is homeoviscous adaptation the explanation? Annu. Rev. Physiol., 1995, vol. 57, pp. 19–24.

    Article  PubMed  CAS  Google Scholar 

  7. Logue, J.A., De Vries, A.L., Fodor, E., and Cossins, A.R., Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure, J. Exp. Biol., 2000, vol. 203, pp. 2105–2115.

    PubMed  CAS  Google Scholar 

  8. Shepelev, A.P., Dependence of lipid composition and phase transitions in myocardial mitochondria of white rats and dogs on the depth of hypothermia, Biofiz., 1977, vol. XXII, iss. 3, pp. 465–467.

    Google Scholar 

  9. Rabadanova, Z.G., Abdurakhmanov, R.G., Klichkhanov, N.K., and Pinyaskina, E.V., Effect of intraperitoneal infusion of sucrose on electrical activity of the rat brain under hypothermic conditions, Fundament. Issled., 2014, vol. 12, pp. 141–144.

    Google Scholar 

  10. Kufel, D.S. and Wojcik, G.M., Analytical modelling of temperature effects on synapses, Neurons and Cognition, arXiv:1610.00611 [q-bio.NC], 2016.

    Google Scholar 

  11. Lapetina, E.G., Soto, E.F., and De Robertis, E., Gangliosides and acetylcholinesterase in isolated membranes of the rat-brain cortex, Biochem. Biophis. Acta, 1967, vol. 135, pp. 33–43.

    Article  CAS  Google Scholar 

  12. Rouser, G., Siakotos, A.N., and Fleischer, S., Quantitative analysis of phospholipids by thinlayer chromatography and phosphorus analysis of spots, Lipids, 1966, vol. 1, pp. 85–86.

    Article  PubMed  CAS  Google Scholar 

  13. Zabelinskii, S.A., Chebotareva, M.A., Shukolyukova, E.P., and Krivchenko, A.I., The fatty acid composition of phospholipids and absorption spectra of lipid extracts from lamprey, frog, and rat erythrocytes, J. Evol. Biochem. Physiol., 2014, vol. 50, iss. 4, pp. 303–309.

    Article  CAS  Google Scholar 

  14. Hitzemann, R.J. and Johnson, D.A., Developmental changes in synaptic membrane lipid composition and fluidity, Neurochem. Res., 1983, vol. 8, no. 2, pp. 121–131.

    Article  PubMed  CAS  Google Scholar 

  15. Davletov, B. and Montecucco, C., Lipid function at synapses, Curr. Opin. Neurobiol., 2010, vol. 20, pp. 543–549.

    Article  PubMed  CAS  Google Scholar 

  16. Puchkov, D. and Haucke, V., Greasing the synaptic vesicle cycle by membrane lipids, Trends Cell Biol., 2013, vol. 23, pp. 493–503.

    Article  PubMed  CAS  Google Scholar 

  17. Marquardt, D., Geier, B., and Pabst, G., Asymmetric lipid membranes: towards more realistic model systems, Membranes, 2015, vol. 5, pp. 180–196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lauwers, E., Goodchild, R., and Verstreken, P., Membrane lipids in presynaptic function and disease, Neuron, 2016, vol. 90, pp. 11–25.

    Article  PubMed  CAS  Google Scholar 

  19. Williams, D., Vicôgne, J., Zaitseva, I., McLaughlin, S., and Pessin, J.E., Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane, Mol. Biol. Cell., 2009, vol. 20, pp. 4910–4919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Moyes, C.D. and Ballantyne, J.S., Membranes and temperature: homeoviscous adaptation, Encyclopedia of Fish Physiology: From Genome to Environment, Farrell, A., Ed., Academic, Elsevier Inc., 2011, pp. 1725–1731.

    Chapter  Google Scholar 

  21. Emirbekov, E.Z. and Klichkhanov, N.K., Svobodnoradikal’nye protsessy i sostoyanie membran pri gipotermii (Free Radical Processes and Membrane Status in Hypothermia), Rostov-on-Don, 2011.

    Google Scholar 

  22. Braverman, N.E. and Mose, A.B., Functions of plasmalogen lipids in health and disease, Biochim. Biophys. Acta–Mol. Basis of Disease, 2012, vol. 1822, pp. 1442–1452.

    Article  CAS  Google Scholar 

  23. Kuczynski, B. and Reo, N.V., Evidence that plasmalogen is protective against oxidative stress in the rat brain, Neurochem. Res., 2006, vol. 31, pp. 639–656.

    Article  PubMed  CAS  Google Scholar 

  24. Broniec, A., Klosinski, R., Pawlak, A., Wrona-Krol, M., Thompson, D., and Sarna, T., Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems, Free Radic. Biol. Med., 2011, vol. 50, pp. 892–898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brennan, A.M., Suh, S.W., Won, S.J., Narasimhan, P., Kauppinen, T.M., Lee, H., Edling, Y., Chan, P.H., and Swanson, R.A., NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation, Nat. Neurosci., 2009, vol. 12, pp. 857–863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shelat, P.B., Chalimoniuk, M., Wang, J.-H., Strosznajder, J.B., Lee, J.C., Sun, A.Y., Simonyi, A., and Sun, G.Y., Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons, J. Neurochem., 2008, vol. 106, pp. 45–55.

    Article  PubMed  CAS  Google Scholar 

  27. Magomedov, K.G., Shikhamirova, Z.M., and Klichkhanov, N.K., Effect of hypothermia on Na, K-ATPase activity in synaptic membranes of the rat brain, Vestn Dag. Nauch. Tsentra RAN, 2011, no. 42, p. 5357.

    Google Scholar 

  28. Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F.M., and Petrosillo, G., Functional role of cardiolipin in mitochondrial bioenergetics, Biochem. Biophys. Acta, 2014, vol. 1837, pp. 408–417.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zabelinskii.

Additional information

Original Russian Text © A.M. Kalandarov, Z. Radzhabova, S.A. Zabelinskii, B. A. Feizulaev, N.K. Klichkhanov, M.A. Chebotareva, A.M. Krivchenko, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 2, pp. 81–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalandarov, A.M., Radzhabova, Z., Zabelinskii, S.A. et al. The Effect of Hypothermia on Phospholipid and Fatty Acid Composition of Synaptic Membranes in the Rat Brain. J Evol Biochem Phys 54, 91–102 (2018). https://doi.org/10.1134/S0022093018020011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018020011

Key words

Navigation