Skip to main content
Log in

Influence of Phospholipid Species on Membrane Fluidity: A Meta-analysis for a Novel Phospholipid Fluidity Index

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Generalized membrane lipid composition determinants of fluidity have been widely investigated, including phospholipid/cholesterol ratio and unsaturation index. Individual phospholipids differ in their physical characteristics, including their interaction with cholesterol and level of unsaturation, emphasizing the importance of examining their individual influence on membrane fluidity. Thus, the purpose of this study was to examine the dominant phospholipids of biological membranes (phosphatidylcholine, PC; phosphatidylethanolamine, PE; sphingomyelin, SM) through a meta-analysis to assess the validity of an inclusive phospholipid fluidity index (PFI = PC/(PE + SM)) as a determinant for membrane fluidity (expressed as polarization of fluorescent probe 1,6 diphenyl-1,3,5-hexatriene) in comparison to previous phospholipid ratios (PC/PE and PC/SM). The results demonstrate that all indices significantly predicted membrane fluidity at 25°C (based on 10–13 data points). In contrast, only PFI approached significance when predicting membrane fluidity at 37°C (P = 0.10 based on five points). As a result, PFI appears to be the only phospholipid index close to significantly predicting membrane fluidity at mammalian physiological temperature. Because this meta-analysis only assessed studies using mammalian membranes, future work should experimentally assess the validity of the PFI utilizing membranes from mammals and a variety of other species and tissues at their respective physiological temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Abel S, Smuts CM, de Villiers C, Gelderblom WC (2001) Changes in essential fatty acid patterns associated with normal liver regeneration and the progression of hepatocyte nodules in rat hepatocarcinogenesis. Carcinogenesis 22:795–804

    Article  PubMed  CAS  Google Scholar 

  • Alvarez E, Ruiz-Gutierrez V, Sobrino F, Santa-Maria C (2001) Age-related changes in membrane lipid composition, fluidity and respiratory burst in rat peritoneal neutrophils. Clin Exp Immunol 124:95–102

    Article  PubMed  CAS  Google Scholar 

  • Bookstein C, Musch MW, Dudeja PK, McSwine RL, Xie Y, Brasitus TA, Rao MC, Chang EB (1997) Inverse relationship between membrane lipid fluidity and activity of Na+/H+ exchangers, NHE1 and NHE3, in transfected fibroblasts. J Membr Biol 160:183–192

    Article  PubMed  CAS  Google Scholar 

  • Borochov H, Zahler P, Wilbrandt W, Shinitzky M (1977) The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane. Biochim Biophys Acta 470:382–388

    Article  CAS  Google Scholar 

  • Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA (1977) Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N Engl J Med 297:371–377

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA, Durocher JR, Leslie MH (1977) Decreased fluidity of red cell membrane lipids in abetalipoproteinemia. J Clin Invest 60:115–121

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    PubMed  CAS  Google Scholar 

  • Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochimica et Biophysica Acta 559:399–420

    PubMed  CAS  Google Scholar 

  • Cullis P, Hope MJ (1985) Physical Properties and Functional Roles of Lipids in Membranes. Benajmin/Cummings, Menlo Park

    Google Scholar 

  • Escriba PV, Gonzalez-Ros JM, Goni FM, Kinnunen PK, Vigh L, Sanchez-Magraner L, Fernandez AM, Busquets X, Horvath I, Barcelo-Coblijn G (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12:829–875

    Article  PubMed  CAS  Google Scholar 

  • Fox MH, Delohery TM (1987) Membrane fluidity measured by fluorescence polarization using an EPICS V cell sorter. Cytometry 8:20–25

    Article  PubMed  CAS  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  PubMed  CAS  Google Scholar 

  • Hitzemann RJ, Johnson DA (1983) Developmental changes in synaptic membrane lipid composition and fluidity. Neurochem Res 8:121–131

    Article  PubMed  CAS  Google Scholar 

  • Koumanov KS, Tessier C, Momchilova AB, Rainteau D, Wolf C, Quinn PJ (2005) Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434:150–158

    Article  PubMed  CAS  Google Scholar 

  • Ladbrooke BD, Chapman D (1969) Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids 3:304–356

    Article  PubMed  CAS  Google Scholar 

  • M’Baye G, Mely Y, Duportail G, Klymchenko AS (2008) Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys J 95:1217–1225

    Article  PubMed  Google Scholar 

  • Mahler SM, Wilce PA, Shanley BC (1988a) Studies on regenerating liver and hepatoma plasma membranes—I. Lipid and protein composition. Int J Biochem 20:605–611

    Article  PubMed  CAS  Google Scholar 

  • Mahler SM, Wilce PA, Shanley BC (1988b) Studies on regenerating liver and hepatoma plasma membranes—II. Membrane fluidity and enzyme activity. Int J Biochem 20:613–619

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TJ, Simon SA (2006) Roles of bilayer material properties in function and distribution of membrane proteins. Annu Rev Biophys Biomol Struct 35:177–198

    Article  PubMed  CAS  Google Scholar 

  • Owen JS, Bruckdorfer KR, Day RC, McIntyre N (1982) Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J Lipid Res 23:124–132

    PubMed  CAS  Google Scholar 

  • Popp-Snijders C, Schouten JA, van Blitterswijk WJ, van der Veen EA (1986) Changes in membrane lipid composition of human erythrocytes after dietary supplementation of (n-3) polyunsaturated fatty acids. Maintenance of membrane fluidity. Biochim Biophys Acta 854:31–37

    Article  PubMed  CAS  Google Scholar 

  • Senault C, Yazbeck J, Goubern M, Portet R, Vincent M, Gallay J (1990) Relation between membrane phospholipid composition, fluidity and function in mitochondria of rat brown adipose tissue. Effect of thermal adaptation and essential fatty acid deficiency. Biochim Biophys Acta 1023:283–289

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Baird B, Holowka D (2007) Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Dev Biol 18:583–590

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky M, Inbar M (1976) Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta 433:133–149

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Ying YS, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci USA 92:10104–10108

    Article  PubMed  CAS  Google Scholar 

  • Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2:504–513

    Article  PubMed  CAS  Google Scholar 

  • Srivastava K, Dash D (2001) Altered membrane fluidity and signal transduction in the platelets from patients of thrombotic stroke. Mol Cell Biochem 224:143–149

    Article  PubMed  CAS  Google Scholar 

  • Sunshine C, McNamee MG (1994) Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta 1191:59–64

    Article  PubMed  CAS  Google Scholar 

  • Treen M, Uauy RD, Jameson DM, Thomas VL, Hoffman DR (1992) Effect of docosahexaenoic acid on membrane fluidity and function in intact cultured Y-79 retinoblastoma cells. Arch Biochem Biophys 294:564–570

    Article  PubMed  CAS  Google Scholar 

  • van Blitterswijk WJ, van der Meer BW, Hilkmann H (1987) Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry 26:1746–1756

    Article  PubMed  Google Scholar 

  • van Meer G, Vaz WL (2005) Membrane curvature sorts lipids. Stabilized lipid rafts in membrane transport. EMBO Rep 6:418–419

    Article  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

VAF was supported by a Master’s Graduate Training Award from the Canadian Institutes of Health Research and an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. LeBlanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fajardo, V.A., McMeekin, L. & LeBlanc, P.J. Influence of Phospholipid Species on Membrane Fluidity: A Meta-analysis for a Novel Phospholipid Fluidity Index. J Membrane Biol 244, 97–103 (2011). https://doi.org/10.1007/s00232-011-9401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9401-7

Keywords

Navigation