Skip to main content
Log in

Mechanisms of action and therapeutic potential of proinsulin C-peptide

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

C-peptide generated by proinsulin proteolysis is not only a chaperone for insulin in β-cells, but also a signaling molecule that regulates many physiological and biochemical processes via specific C-peptide receptors. Regulatory effects of C-peptide are tissue-specific and largely depend on the physiological state of an organism, C-peptide concentration, and its ability to form complexes. In type 1 diabetes mellitus, which is characterized by a C-peptide deficiency, C-peptide replacement therapy prevents the development of inflammation in vascular endothelial cells, whereas C-peptide excess, in contrast, reveals its pro-inflammatory properties. By affecting a number of effector proteins and transcription factors in the retinal pigment epithelium, C-peptide prevents both blood–retinal barrier damage and retinal neovascularization, which makes it one of the most promising drugs to treat and prevent diabetic retinopathy. C-peptide has been established to be involved in the regulation of synthesis and secretion of adipokines, which is indicative of its role in controlling energy homeostasis. Considering the efficiency of C-peptide in the treatment of diabetic nephropathy, neuropathy and retinopathy, C-peptide medicinal forms are now being developed. Among these forms, of greatest interest are C-peptide analogs modified by polyethylene glycol, C-peptide complexes with zinc cations and albumin, and C-terminal fragments of C-peptide comparable by their biological activity to a full-length molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitt Katz, L.E., C-peptide and 24-hour urinary C-peptide as markers to help classify types of childhood diabetes, Horm. Res. Paediatr., 2015, vol. 84, pp. 62–64.

    Article  CAS  PubMed  Google Scholar 

  2. McDonald, T.J. and Perry, M.H., Detection of C-peptide in urine as a measure of ongoing beta cell function, Methods Mol. Biol., 2016, vol. 1433, pp. 93–102.

    Article  CAS  PubMed  Google Scholar 

  3. Kitamura, T., Kimura, K., Jung, B.D., Makondo, K., Okamoto, S., Cañas, X., Sakane, N., Yoshida, T., and Saito, M., Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein, Biochem. J., 2001, vol. 355, pp. 123–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Derkach, K.V., Shpakova, E.A., Tarasenko, I.I., and Shpakov, A.O., Proinsulin C-peptide and its C-terminal fragments stimulate Gi/o proteins but do not affect adenylyl cyclase activity, Zh. Evol. Biokhim. Fiziol., 2015, vol. 51, no. 5, pp. 383–385.

    CAS  PubMed  Google Scholar 

  5. Shpakov, A.O., New achievements in studying mechanisms and targets of proinsulin C-peptide action, Tsitol., 2015, vol. 57, no. 6, pp. 405–414.

    CAS  Google Scholar 

  6. Yosten, G.L., Kolar, G.R., Redlinger, L.J., and Samson, W.K., Evidence for an interaction between proinsulin C-peptide and GPR146, J. Endocrinol., 2013, vol. 218, pp. B1–B8.

    Article  CAS  Google Scholar 

  7. Yosten, G.L., Maric-Bilkan, C., Luppi, P., and Wahren, J., Physiological effects and therapeutic potential of proinsulin C-peptide, Am. J. Physiol., 2014, vol. 307, pp. E955–E968.

    CAS  Google Scholar 

  8. Yosten, G.L. and Kolar, G.R., The physiology of proinsulin C-peptide: unanswered questions and a proposed model, Physiology, 2015, vol. 30, pp. 327–332.

    Article  CAS  PubMed  Google Scholar 

  9. Luppi, P., Cifarelli, V., Tse, H., Piganelli, J., and Trucco, M., Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-κB pathway, Diabetologia, 2008, vol. 51, pp. 1534–1543.

    Article  CAS  PubMed  Google Scholar 

  10. Haidet, J., Cifarelli, V., Trucco, M., and Luppi, P., C-peptide reduces pro-inflammatory cytokine secretion in LPS-stimulated U937 monocytes in condition of hyperglycemia, Inflamm. Res., 2012, vol. 61, pp. 27–35.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Rasheed, N.M., Chana, R.S., Baines, R.J., Willars, G.B., and Brunskill, N.J., Ligand-independent activation of peroxisome proliferatoractivated receptor-γ by insulin and C-peptide in kidney proximal tubular cells: dependent on phosphatidylinositol 3-kinase activity, J. Biol. Chem., 2004, vol. 279, pp. 49747–49754.

    Article  CAS  PubMed  Google Scholar 

  12. Vish, M.G., Mangeshkar, P., Piraino, G., Denenberg, A., Hake, P.W., O’Connor, M., and Zingarelli, B., Proinsulin c-peptide exerts beneficial effects in endotoxic shock in mice, Crit. Care Med., 2007, vol. 35, pp. 1348–1355.

    Article  CAS  PubMed  Google Scholar 

  13. Kitamura, T., Kimura, K., Makondo, K., Furuya, D.T., Suzuki, M., Yoshida, T., and Saito, M., Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats, Diabetologia, 2003, vol. 46, pp. 1698–1705.

    Article  CAS  PubMed  Google Scholar 

  14. Wallerath, T., Kunt, T., Forst, T., Closs, E.I., Lehmann, R., Flohr, T., Gabriel, M., Schäfer, D., Göpfert, A., Pfützner, A., Beyer, J., and Förstermann, U., Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide, Nitric Oxide, 2003, vol. 9, pp. 95–102.

    Article  CAS  PubMed  Google Scholar 

  15. Marx, N., Walcher, D., Raichle, C., Aleksic, M., Bach, H., Grüb, M., Hombach, V., Libby, P., Zieske, A., Homma, S., and Strong, J., C-peptide colocalizes with macrophages in early arteriosclerotic lesions of diabetic subjects and induces monocyte chemotaxis in vitro, Arterioscler. Thromb. Vasc. Biol., 2004, vol. 24, pp. 540–545.

    Article  CAS  PubMed  Google Scholar 

  16. Walcher, D., Aleksic, M., Jerg, V., Hombach, V., Zieske, A., Homma, S., Strong, J., and Marx, N., C-peptide induces chemotaxis of human CD4-positive cells: involvement of pertussis toxin-sensitive G-proteins and phosphoinositide 3-kinase, Diabetes, 2004, vol. 53, pp. 1664–1670.

    Article  CAS  PubMed  Google Scholar 

  17. Walcher, D. and Marx, N., C-peptide in the vessel wall, Rev. Diabet. Stud., 2009, vol. 6, pp. 180–186.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vasic, D., Marx, N., Sukhova, G., Bach, H., Durst, R., Grüb, M., Hausauer, A., Hombach, V., Rottbauer, W., and Walcher, D., C-peptide promotes lesion development in a mouse model of arteriosclerosis, J. Cell. Mol. Med., 2012, vol. 16, pp. 927–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, S.T., Kim, B.J., Lim, D.M., Song, I.G., Jung, J.H., Lee, K.W., Park, K.Y., Cho, Y.Z., Lee, D.H., and Koh, G.P., Basal C-peptide level as a surrogate marker of subclinical atherosclerosis in type 2 diabetic patients, Diabetes Metab. J., 2011, vol. 35, pp. 41–49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, L., Lin, P., Ma, A., Zheng, H., Wang, K., Li, W., Wang, C., Zhao, R., Liang, K., Liu, F., Hou, X., Song, J., Lu, Y., Zhu, P., Sun, Y., and Chen, L., C-Peptide is independently associated with an increased risk of coronary artery disease in T2DM subjects: A cross-sectional study, PLoS One, 2015, vol. 10, p. e0127112.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Patel, N., Taveira, T.H., Choudhary, G., Whitlatch, H., and Wu, W.C., Fasting serum C-peptide levels predict cardiovascular and overall death in nondiabetic adults, J. Am. Heart Assoc., 2012, vol. 1, p. e003152.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marx, N., Silbernagel, G., Brandenburg, V., Burgmaier, M., Kleber, M.E., Grammer, T.B., Winkelmann, B.R., Boehm, B.O., and März, W., C-peptide levels are associated with mortality and cardiovascular mortality in patients undergoing angiography: the LURIC study, Diabetes Care, 2013, vol. 36, pp. 708–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, S., Kim, E., Jhun, H., Hong, J., Kwak, A., Jo, S., Bae, S., Lee, J., Kim, B., Lee, J., Youn, S., Kim, S., Kim, M., Kim, H., Lee, Y., Choi, D.K., Kim, Y.S., and Kim, S., Proinsulin shares a motif with IL-1α and induces inflammatory cytokine via interleukin-1 receptor 1, J. Biol. Chem., 2016. pii: jbc.M116.731026.

    Google Scholar 

  24. Jornvall, H., Lindahl, E., Astorga-Wells, J., Lind, J., Holmlund, A., Melles, E., Alvelius, G., Nerelius, C., Mäler, L., and Johansson, J., Oligomerization and insulin interactions of proinsulin C-peptide: Threefold relationships to properties of insulin, Biochem. Biophys. Res. Commun., 2010, vol. 391, pp. 1561–1566.

    Article  PubMed  Google Scholar 

  25. Landreh, M., Johansson, J., and Jörnvall, H., C-peptide: a molecule balancing insulin states in secretion and diabetes-associated depository conditions, Horm. Metab. Res., 2013, vol. 45, pp. 769–773.

    Article  CAS  PubMed  Google Scholar 

  26. Tsiolaki, P.L., Louros, N.N., Zompra, A.A., Hamodrakas, S.J., and Iconomidou, V.A., Unraveling the aggregation propensity of human insulin C-peptide, Biopolymers, 2016. doi: 10.1002/ bip.22882

    Google Scholar 

  27. Buras, E.D., Yang, L., Saha, P., Kim, J., Mehta, P., Yang, Y., Hilsenbeck, S., Kojima, H., Chen, W., Smith, C.W., and Chan, L., Proinsulinproducing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice, FASEB J., 2015, vol. 29, pp. 3537–3548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bavenholm, P., Proudler, A., Tornvall, P., Godsland, I., Landou, C., de Faire, U., and Hamsten, A., Insulin, intact and split proinsulin, and coronary artery disease in young men, Circulation, 1995, vol. 92, pp. 1422–1429.

    Article  CAS  PubMed  Google Scholar 

  29. Jia, E.Z., Yang, Z.J., Chen, S.W., Qi, G.Y., You, C.F., Ma, J.F., Zhang, J.X., Wang, Z.Z., Qian, W.C., Li, X.L., Wang, H.Y., and Ma, W.Z., Significant association of insulin and proinsulin with clustering of cardiovascular risk factors, World J. Gastroenterol., 2005, vol. 11, pp. 149–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfützner, A. and Forst, T., Elevated intact proinsulin levels are indicative of Beta-cell dysfunction, insulin resistance, and cardiovascular risk: impact of the antidiabetic agent pioglitazone, J. Diabetes Sci. Technol., 2011, vol. 5, pp. 784–793.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kempen, J.H., O’Colmain, B.J., Leske, M.C., Haffner, S.M., Klein, R., Moss, S.E., Taylor, H.R., Hamman, R.F., West, S.K., Wang, J.J., Congdon, N.G., and Friedman, D.S., The prevalence of diabetic retinopathy among adults in the United States, Arch. Ophthalmol., 2004, vol. 122, pp. 552–563.

    Article  PubMed  Google Scholar 

  32. Nathan, D.M., Zinman, B., Cleary, P.A., Backlund, J.Y., Genuth, S., Miller, R., and Orchard, T.J., Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983–2005), Arch. Intern. Med., 2009, vol. 169, pp. 1307–1316.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ola, M.S., Nawaz, M.I., Khan, H.A., and Alhomida, A.S., Neurodegeneration and neuroprotection in diabetic retinopathy, Int. J. Mol. Sci., 2013, vol. 14, pp. 2559–2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strauss, O. The retinal pigment epithelium in visual function, Physiol. Rev., 2005, vol. 85, pp. 845–881.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, C., Wang, H., Nie, J., and Wang, F., Protective factors in diabetic retinopathy: focus on blood-retinal barrier, Discov. Med., 2014, vol. 18, pp. 105–112.

    CAS  PubMed  Google Scholar 

  36. Antcliff, R.J. and Marshall, J., The pathogenesis of edema in diabetic maculopathy, Seminars Ophthalmol., 1999, vol. 14, pp. 223–232.

    Article  CAS  Google Scholar 

  37. Ablonczy, Z. and Crosson, C.E., VEGF modulation of retinal pigment epithelium resistance, Exp. Eye Res., 2007, vol. 85, pp. 762–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ido, Y., Vindigni, A., Chang, K., Stramm, L., Chance, R., Heath, W.F., DiMarchi, R.D., Di Cera, E., and Williamson, J.R., Prevention of vascular and neural dysfunction in diabetic rats by Cpeptide, Science, 1997, vol. 277, pp. 563–566.

    Article  CAS  PubMed  Google Scholar 

  39. Lim, Y.C., Bhatt, M.P., Kwon, M.H., Park, D., Lee, S., Choe, J., Hwang, J., Kim, Y.M., and Ha, K.S., Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice, Cardiovasc. Res., 2014, vol. 101, pp. 155–164.

    Article  CAS  PubMed  Google Scholar 

  40. Bo, S., Gentile, L., Castiglione, A., Prandi, V., Canil, S., Ghigo, E., and Ciccone, G., C-peptide and the risk for incident complications and mortality in type 2 diabetic patients: a retrospective cohort study after a 14-year follow-up, Eur. J. Endocrinol., 2012, vol. 167, pp. 173–180.

    CAS  PubMed  Google Scholar 

  41. Lachin, J.M., McGee, P., and Palmer, J.P., Impact of C-peptide preservation on metabolic and clinical outcomes in the diabetes control and complications trial, Diabetes, 2014, vol. 63, pp. 739–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung, J.O., Cho, D.H., Chung, D.J., and Chung, M.Y., Relationship between serum Cpeptide level and diabetic retinopathy according to estimated glomerular filtration rate in patients with type 2 diabetes, J. Diabetes Complications, 2015, vol. 29, pp. 350–355.

    Article  PubMed  Google Scholar 

  43. Kolar, G.R., Grote, S.M., and Yosten, G.L., Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: Cpeptide and GPR146, J. Intern. Med., 2016. doi: 10.1111/joim.12528

    Google Scholar 

  44. Bhatt, M.P., Lim, Y.C., Kim, Y.M., and Ha, K.S., C-peptide activates AMPKα and prevents ROSmediated mitochondrial fission and endothelial apoptosis in diabetes, Diabetes, 2013, vol. 62, pp. 3851–3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richards, J.P., Stephenson, A.H., Ellsworth, M.L., and Sprague, R.S., Synergistic effects of C-peptide and insulin on low O2-induced ATP release from human erythrocytes, Am. J. Physiol., 2013, vol. 305, pp. R1331–1336.

    CAS  Google Scholar 

  46. Richards, J.P., Yosten, G.L., Kolar, G.R., Jones, C.W., Stephenson, A.H., Ellsworth, M.L., and Sprague, R.S., Low O2-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin, Am. J. Physiol., 2014, vol. 307, pp. R862–868.

    CAS  Google Scholar 

  47. Ghaderi, S., Soheili, Z.S., Ahmadieh, H., Davari, M., Jahromi, F.S., Samie, S., Rezaie-Kanavi, M., Pakravesh, J., and Deezagi, A., Human amniotic fluid promotes retinal pigmented epithelial cells’ trans-differentiation into rod photoreceptors and retinal ganglion cells, Stem Cells Dev., 2011, vol. 20, pp. 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  48. Kuznetsova, A.V., Kurinov, A.M., and Aleksandrova, M.A., Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium, J. Ophthalmol., 2014, vol. 2014, pp. 801787.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pfleger, C., Mortensen, H.B., Hansen, L., Herder, C., Roep, B.O., Hoey, H., Aanstoot, H.J., Kocova, M., and Schloot, N.C.; Hvidøre Study Group on Childhood Diabetes. Association of IL-1ra and adiponectin with C-peptide and remission in patients with type 1 diabetes, Diabetes, 2008, vol. 57, pp. 929–937.

    Article  CAS  PubMed  Google Scholar 

  50. Wijsekara, N., Krishnamurthy, M., Bhattachariee, A., Suhail, A., Sweeney, G., and Wheeler, M.B., Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion, J. Biol. Chem., 2010, vol. 285, pp. 33623–33631.

    Article  Google Scholar 

  51. Pham, M.N., Kolb, H., Mandrup-Poulsen, T., Battelino, T., Ludvigsson, J., Pozzilli, P., Roden, M., and Schloot, N.C.; European C-Peptide Trial. Serum adipokines as biomarkers of beta-cell function in patients with type 1 diabetes: positive association with leptin and resistin and negative association with adiponectin, Diabetes. Metab. Res. Rev., 2013, vol. 29, pp. 166–170.

    Article  CAS  PubMed  Google Scholar 

  52. Matarese, G., Sanna, V., Lechler, R.I., Sarvetnick, N., Fontana, S., Zappacosta, S., and La Cava, A., Leptin accelerates autoimmune diabetes in female NOD mice, Diabetes, 2002, vol. 51, pp. 1356–1361.

    Article  CAS  PubMed  Google Scholar 

  53. Maedler, K., Sergeev, P., Ehses, J.A., Mathe, Z., Bosco, D., Berney, T., Dayer, J.M., Reinecke, M., Halban, P.A., and Donath, M.Y., Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 8138–8143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakata, M., Okada, T., Ozawaka, K., and Yada, T., Resistin induces insulin resistance in pancreatic islets to impair glucose-induced insulin release, Biochem. Biophys. Res. Commun., 2007, vol. 353, pp. 1046–1051.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Serrano, S., Gutiérrez-Repiso, C., Gonzalo, M., Garcia-Arnes, J., Valdes, S., Soriguer, F., Perez-Valero, V., Alaminos-Castillo, M.A., Francisco Cobos-Bravo, J., Moreno-Ruiz, F.J., Rodriguez-Cañete, A., Rodríguez-Pacheco, F., Garcia-Escobar, E., and García-Fuentes, E., Cpeptide modifies leptin and visfatin secretion in human adipose tissue, Obesity (Silver Spring), 2015, vol. 23, pp. 1607–1615.

    Article  CAS  Google Scholar 

  56. Zhang, W., Kamiya, H., Ekberg, K., Wahren, J., and Sima, A.A., C-peptide improves neuropathy in type 1 diabetic BB/Wor rats, Diabetes Metab. Res. Rev., 2007, vol. 23, pp. 63–70.

    Article  PubMed  Google Scholar 

  57. Shaw, J.A., Shetty, P., Burns, K.D., Fergusson, D., and Knoll, G.A., C-peptide as a therapy for kidney disease: A systematic review and metaanalysis, PLoS One, 2015, vol. 10, p. e0127439.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wahren, J. and Larsson, C., C-peptide: new findings and therapeutic possibilities, Diabetes Res. Clin. Pract., 2015, vol. 107, pp. 309–319.

    Article  CAS  PubMed  Google Scholar 

  59. Jolivalt, C.G., Rodriguez, M., Wahren, J., and Calcutt, N.A., Efficacy of a long-acting C-peptide analogue against peripheral neuropathy in streptozotocin- diabetic mice, Diabetes Obes. Metab., 2015, vol. 17, pp. 781–788.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, X., Wang, H., Ma, Z., and Wu, B., Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns, Expert Opin. Drug Metab. Toxicol., 2014, vol. 10, pp. 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  61. Medawala, W., McCahill, P., Giebink, A., Meyer, J., Ku, C.J., and Spence, D.M., A molecular level understanding of zinc activation of C-peptide and its effects on cellular communication in the bloodstream, Rev. Diabet. Stud., 2009, vol. 6, pp. 148–158.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Keltner, Z., Meyer, J.A., Johnson, E.M., Palumbo, A.M., Spence, D.M., and Reid, G.E., Mass spectrometric characterization and activity of zinc-activated proinsulin C-peptide and C-peptide mutants, Analyst, 2010, vol. 135, pp. 278–288.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Y., Chen, C., Summers, S., Medawala, W., and Spence, D.M., C-peptide and zinc delivery to erythrocytes requires the presence of albumin: implications in diabetes explored with a 3D-printed fluidic device, Integr. Biol. (Camb.), 2015, vol. 7, pp. 534–543.

    Article  CAS  Google Scholar 

  64. Nerelius, C., Alvelius, G., and Jörnvall, H., Nterminal segment of proinsulin C-peptide active in insulin interaction/desaggregation, Biochem. Biophys. Res. Commun., 2010, vol. 403, pp. 462–467.

    Article  CAS  PubMed  Google Scholar 

  65. Sato, Y., Oshida, Y., Han, Y.Q., Morishita, Y., Li, L., Ekberg, K., Jörnvall, H., and Wahren, J., C-peptide fragments stimulate glucose utilization in diabetic rats, Cell Mol. Life Sci., 2004, vol. 61, pp. 727–732.

    Article  CAS  PubMed  Google Scholar 

  66. Nordquist, L., Moe, E., and Sjöquist, M., The C-peptide fragment EVARQ reduces glomerular hyperfiltration in streptozotocin-induced diabetic rats, Diabetes Metab. Res. Rev., 2007, vol. 23, pp. 400–405.

    Article  PubMed  Google Scholar 

  67. Hach, T., Forst, T., Kunt, T., Ekberg, K., Pfützner, A., and Wahren, J., C-peptide and its C-terminal fragments improve erythrocyte deformability in type 1 diabetes patients, Exp. Diabetes Res., 2008, vol. 2008, p. 730594.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shpakov, A.O. and Granstrem, O.K., Physiological effects of C-peptide, Ros. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 2, pp. 196–211.

    CAS  Google Scholar 

  69. Ido, Y., Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3, J. Diabetes Invest., 2016, vol. 7, pp. 448–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © A.O. Shpakov, 2017, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2017, Vol. 53, No. 3, pp. 161—169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakov, A.O. Mechanisms of action and therapeutic potential of proinsulin C-peptide. J Evol Biochem Phys 53, 180–190 (2017). https://doi.org/10.1134/S0022093017030024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093017030024

Key words

Navigation