Skip to main content

Advertisement

Log in

C-peptide reduces pro-inflammatory cytokine secretion in LPS-stimulated U937 monocytes in condition of hyperglycemia

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We investigated C-peptide effects on inflammatory cytokine release and adhesion of monocytes exposed to high glucose and lipopolysaccharide (LPS) in vitro.

Materials and methods

Monocytic cells (U-937) were cultured in the presence of 30 mmol/L glucose and stimulated with 0.5 ng/μL LPS in the presence or absence of C-peptide (1 μmol/L) for 24 h to induce inflammatory cytokine secretion. Adhesion of U-937 monocytes to human aortic endothelial cells (HAEC) was also studied in the presence or absence of C-peptide. Concentrations of IL-6, IL-8, macrophage inflammatory protein(MIP)-1α, and MIP-1β in supernatants from LPS-stimulated U-937 monocytes were assessed by Luminex. To gain insights into potential intracellular signaling pathways affected by C-peptide, we investigated nuclear translocation of nuclear factor(NF)-κB p65/p50 subunits by western blot in LPS-treated U-937 cells. The effect of C-peptide on LPS-induced phosphorylation of the cytoplasmic protein IκB-α was also investigated by immunoblotting.

Results

Addition of C-peptide significantly reduced cytokine secretion from LPS-stimulated U-937 monocytes. Adhesion of U-937 cells to HAEC was also significantly reduced by C-peptide. These effects were accompanied by reduced NF-κB p65/p50 nuclear translocation and decreased phosphorylation of IκB-α.

Conclusions

We conclude that, in conditions of hyperglycemia, C-peptide reduces monocytes activation via inhibition of the NF-κB pathway

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Libby P, Nathan DM, Abraham K, et al. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases working group on cardiovascular complications of type 1 diabetes mellitus. Circulation. 2005;111(25):3489–93.

    Article  PubMed  Google Scholar 

  2. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993;328(23):1676–85.

    Article  PubMed  CAS  Google Scholar 

  3. Devaraj S, Dasu MR, Jialal I. Diabetes is a proinflammatory state: a translational perspective. Expert Rev Endocrinol Metab. 2010;5(1):19–28.

    PubMed  CAS  Google Scholar 

  4. Devaraj S, Glaser N, Griffen S, et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes. 2006;55(3):774–9.

    Article  PubMed  CAS  Google Scholar 

  5. Plesner A, Greenbaum CJ, Gaur LK, et al. Macrophages from high-risk HLA-DQB1*0201/*0302 type 1 diabetes mellitus patients are hypersensitive to lipopolysaccharide stimulation. Scand J Immunol. 2002;56(5):522–9.

    Article  PubMed  CAS  Google Scholar 

  6. Erbagci AB, Tarakcioglu M, Coskun Y, et al. Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clin Biochem. 2001;34(8):645–50.

    Article  PubMed  CAS  Google Scholar 

  7. Rosa JS, Flores RL, Oliver SR, et al. Sustained IL-1alpha, IL-4, and IL-6 elevations following correction of hyperglycemia in children with type 1 diabetes mellitus. Pediatr Diabetes. 2008;9(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  8. Cifarelli V, Libman IM, Deluca A, et al. Increased expression of monocyte CD11b (Mac-1) in overweight recent-onset type 1 diabetic children. Rev Diabet Stud. 2007;4(2):112–7.

    Article  PubMed  Google Scholar 

  9. Devaraj S, Cheung AT, Jialal I, et al. Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes. 2007;56(11):2790–6.

    Article  PubMed  CAS  Google Scholar 

  10. Saraheimo M, Teppo AM, Forsblom C, et al. Diabetic nephropathy is associated with low-grade inflammation in Type 1 diabetic patients. Diabetologia. 2003;46(10):1402–7.

    Article  PubMed  CAS  Google Scholar 

  11. Schalkwijk CG, Ter Wee PM, Stehouwer CD. Plasma levels of AGE peptides in type 1 diabetic patients are associated with serum creatinine and not with albumin excretion rate: possible role of AGE peptide-associated endothelial dysfunction. Ann NY Acad Sci. 2005;1043:662–70.

    Article  PubMed  CAS  Google Scholar 

  12. Zuckerbraun BS, McCloskey CA, Mahidhara RS, et al. Overexpression of mutated IkappaBalpha inhibits vascular smooth muscle cell proliferation and intimal hyperplasia formation. J Vasc Surg. 2003;38(4):812–9.

    Article  PubMed  Google Scholar 

  13. Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med. 1997;3(8):894–9.

    Article  PubMed  CAS  Google Scholar 

  14. Vish MG, Mangeshkar P, Piraino G, et al. Proinsulin c-peptide exerts beneficial effects in endotoxic shock in mice. Crit Care Med. 2007;35(5):1348–55.

    Article  PubMed  CAS  Google Scholar 

  15. Scalia R, Coyle KM, Levine BJ, et al. C-peptide inhibits leukocyte-endothelium interaction in the microcirculation during acute endothelial dysfunction. FASEB J. 2000;14(14):2357–64.

    Article  PubMed  CAS  Google Scholar 

  16. Young LH, Ikeda Y, Scalia R, et al. C-peptide exerts cardioprotective effects in myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2000;279(4):H1453–9.

    PubMed  CAS  Google Scholar 

  17. Luppi P, Cifarelli V, Tse H, et al. Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-kappaB pathway. Diabetologia. 2008;51(8):1534–43.

    Article  PubMed  CAS  Google Scholar 

  18. Ekberg K, Brismar T, Johansson BL, et al. C-Peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  19. Johansson BL, Borg K, Fernqvist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus. Diabet Med. 2000;17(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  20. Sima AA, Li ZG. The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes. 2005;54(5):1497–505.

    Article  PubMed  CAS  Google Scholar 

  21. Panero F, Novelli G, Zucco C, et al. Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients. Diabetes Care. 2009;32(2):301–5.

    Article  PubMed  CAS  Google Scholar 

  22. Thompson DM, Begg IS, Harris C, et al. Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy. Transplantation. 2008;85(10):1400–5.

    Article  PubMed  Google Scholar 

  23. Remuzzi A, Cornolti R, Bianchi R, et al. Regression of diabetic complications by islet transplantation in the rat. Diabetologia. 2009;52(12):2653–61.

    Article  PubMed  CAS  Google Scholar 

  24. Gremizzi C, Vergani A, Paloschi V, et al. Impact of pancreas transplantation on type 1 diabetes-related complications. Curr Opin Organ Transplant. 2010;15(1):119–23.

    Article  PubMed  Google Scholar 

  25. Robertson RP. Update on transplanting beta cells for reversing type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):655–67.

    Article  PubMed  CAS  Google Scholar 

  26. Luppi P, Geng X, Cifarelli V, et al. C-peptide is internalised in human endothelial and vascular smooth muscle cells via early endosomes. Diabetologia. 2009;52(10):2218–28.

    Article  PubMed  CAS  Google Scholar 

  27. Piga R, Naito Y, Kokura S, et al. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193(2):328–34.

    Article  PubMed  CAS  Google Scholar 

  28. Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic Biol Med. 2004;36(2):233–47.

    Article  PubMed  CAS  Google Scholar 

  29. Schram MT, Chaturvedi N, Schalkwijk C, et al. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2003;26(7):2165–73.

    Article  PubMed  Google Scholar 

  30. Beyan H, Goodier MR, Nawroly NS, et al. Altered monocyte cyclooxygenase response to lipopolysaccharide in type 1 diabetes. Diabetes. 2006;55(12):3439–45.

    Article  PubMed  CAS  Google Scholar 

  31. Litherland SA, Xie XT, Hutson AD, et al. Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest. 1999;104(4):515–23.

    Article  PubMed  CAS  Google Scholar 

  32. Cifarelli V, Luppi P, Tse HM, et al. Human proinsulin C-peptide reduces high glucose-induced proliferation and NF-kappaB activation in vascular smooth muscle cells. Atherosclerosis. 2008;201(2):248–57.

    Article  PubMed  CAS  Google Scholar 

  33. Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988;242(4878):540–6.

    Article  PubMed  CAS  Google Scholar 

  34. Brand K, Page S, Walli AK, et al. Role of nuclear factor-kappa B in atherogenesis. Exp Physiol. 1997;82(2):297–304.

    PubMed  CAS  Google Scholar 

  35. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397:342–4.

    Article  PubMed  CAS  Google Scholar 

  36. Cifarelli V, Geng X, Styche A, Lakomy B, Trucco M, Luppi P. C-peptide reduces high-glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation in human aortic endothelial cells. Diabetologia. 2011. doi:10.1007/s00125-011-2251-0.

  37. Dandona P, Chaudhuri A, Ghanim H, et al. Anti-inflammatory effects of insulin and the pro-inflammatory effects of glucose. Semin Thorac Cardiovasc Surg. 2006;18(4):293–301.

    Article  PubMed  Google Scholar 

  38. Hyun E, Ramachandran R, Cenac N, et al. Insulin modulates protease-activated receptor 2 signaling: implications for the innate immune response. J Immunol. 2010;184(5):2702–9.

    Article  PubMed  CAS  Google Scholar 

  39. Hansen TK, Thiel S, Wouters PJ, et al. Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab. 2003;88(3):1082–8.

    Article  PubMed  CAS  Google Scholar 

  40. Li H, Xu L, Dunbar JC, et al. Effects of C-peptide on expression of eNOS and iNOS in human cavernosal smooth muscle cells. Urology. 2004;64(3):622–7.

    Article  PubMed  Google Scholar 

  41. Mughal RS, Scragg JL, Lister P, et al. Cellular mechanisms by which proinsulin C-peptide prevents insulin-induced neointima formation in human saphenous vein. Diabetologia. 2010;53(8):1761–71.

    Article  PubMed  CAS  Google Scholar 

  42. Li ZG, Zhang W, Sima AA. C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev. 2003;19(5):375–85.

    Article  PubMed  Google Scholar 

  43. Al-Rasheed NM, Chana RS, Baines RJ, et al. Ligand-independent activation of peroxisome proliferator-activated receptor-gamma by insulin and C-peptide in kidney proximal tubular cells: dependent on phosphatidylinositol 3-kinase activity. J Biol Chem. 2004;279(48):49747–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by: the Henry Hillman Endowment Chair in Pediatric Immunology (M.T.) and by grants DK 024021-24 from the National Institute of Health and NIH 5K12 DK063704 (P.L. and M.T.), and W81XWH-10-1-1055 from the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Haidet.

Additional information

Responsible Editor: Ian Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haidet, J., Cifarelli, V., Trucco, M. et al. C-peptide reduces pro-inflammatory cytokine secretion in LPS-stimulated U937 monocytes in condition of hyperglycemia. Inflamm. Res. 61, 27–35 (2012). https://doi.org/10.1007/s00011-011-0384-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0384-8

Keywords

Navigation