Skip to main content
Log in

Current viewpoint on structure and on evolution of collagens. II. Fibril-associated collagens

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Fibril-associated collagens (FACITs) form one of subfamilies included in family of collagens. Being minor components of connective tissue of multicellular animals, FACITs play an important role in structurization of extracellular matrix whose peculiarities determine essential intertissue differences. FACITs participate in regulation of sizes of banded collagen fibrils as well as are connecting links between various components extracellular matrix and cells in different tissues. Functional characteristics of FACIT molecules are determined by peculiarities of structural organization of their α-chains (breakdowns in collagenous domains and module structure of N-terminal noncollagenous sites), trimeric molecules (domains of trimerization) and supramolecular assemblies (mainly association with banded collagen fibrils and the inability to form homopolymeric supramolecular aggregates). The problem of evolution of this group of collagen molecules is also discussed. A hypothetical model of structural changes leading to formation of the FACIT subfamily is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanova, V.P. and Krivchenko, A.I., Current viewpoint to structure and evolution of collagens. I. Fibrillary collagens, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, no. 2, pp. 118–128.

    PubMed  CAS  Google Scholar 

  2. Birk, D.E. and Brückner, P., Collagens, suprastructures, and collagen fibril assembly, The Extracellular Matrix: An Overview, Biology of Extracellular Matrix, Mecham, R.P., Ed., Berlin Heidelberg, 2011, pp. 77–115.

    Google Scholar 

  3. Exposito, J.-Y., Valcourt, U., Cluzel, C., and Lethias, C., The fibrillar collagen family, Int. J. Mol. Sci., 2010, vol. 11, pp. 407–426.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Gordon, M.K. and Hahn, R.A., Collagens, Cell Tissue Res., 2010, vol. 339, pp. 247–257.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ricard-Blum, S., The collagen family, Cold Spring Harb. Perspect. Biol., 2011, vol. 3: a 004978.

  6. Bhattacharjee, A. and Bansal, M., Collagen structure: the madras triple helix and the current scenario, IUBMB Life, 2005, vol. 57, pp. 161–172.

    Article  PubMed  CAS  Google Scholar 

  7. Brodsky, B. and Persikov, A.V., Molecular structure of the collagen triple helix, Adv. Protein Chem., 2005, vol. 70, pp. 301–339.

    Article  PubMed  CAS  Google Scholar 

  8. Brodsky, B. and Shah, N.K., The triple helix motif in proteins, FASEB J., 1995, vol. 9, pp. 1537–1546.

    PubMed  CAS  Google Scholar 

  9. Brodsky, B., Thiagarajan, G., Madhan, B., and Kar, K., Triple-helical peptides: an approach to collagen conformation, stability, and self-association, Biopolymers, 2008, vol. 89, pp. 345–353.

    Article  PubMed  CAS  Google Scholar 

  10. Shoulders, M.D. and Raines, R.T., Collagen structure and stability, Annu. Rev. Biochem., 2009, vol. 78, pp. 929–958.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Birk, D.E. and Brückner, P., Collagen suprastructures, Top. Curr. Chem., 2005, vol. 247, pp. 185–205.

    CAS  Google Scholar 

  12. Käpylä, J., Jäälinoja, J., Tulla, M., Ylöstalo, J., Nissinen, L., Viitasalo, T., Vehviläinen, P., Marjomäki, V., Nykvist, P., Säämänen, A.-M., Farndale, R.W., Birk, D.E., Ala-Kokko, L., and Heino, J., The fibril-associated collagen IX provides a novel mechanism for cell adhesion to cartilaginous matrix, J. Biol. Chem., 2004, vol. 279, pp. 51677–51687.

    Article  PubMed  Google Scholar 

  13. Anderson, S., SundarRaj, S., Fite, D., Wessel, H., and SundarRaj, N., Developmentally regulated appearance of spliced variants of type XII collagen in the cornea, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, pp. 55–63.

    PubMed  CAS  Google Scholar 

  14. Gerecke, D.R., Olson, P.F., Koch, M., Knoll, J.H., Taylor, R., Hudson, D.L., Champliaud, M.F., Olsen, B.R., and Burgeson, R.E., Complete primary structure of two splice variants of collagen XII, and assignment of α1(XII) collagen (COL12A1), α1(IX) collagen (COL9A1), α1(XIX) collagen (COL19A1) to human chromosome 6 q12–q13, Genomics, 1997. vol. 41, pp. 236–242.

    Article  PubMed  CAS  Google Scholar 

  15. Gregory, K.E., Keene, D.R., Tufa, S.F., Lunstrum, G.P., and Morris, N.P., Developmental distribution of collagen type XII in cartilage: association with articular cartilage and the growth plate, J. Bone Miner. Res., 2001, vol. 16, pp. 2005–2016.

    Article  PubMed  CAS  Google Scholar 

  16. Ansorge, H.L., Meng, X., Zhang, G., Veit, G., Sun, M., Klement, J.F., Beason, D.P., Soslowsky, L.J., Koch, M., and Birk, D.E., Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice, J. Biol. Chem., 2009, vol. 284, pp. 8427–8438.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Dublet, B. and van der Rest, M., Type XIV collagen, a new homotrimeric molecule extracted from fetal bovine skin and tendon, with a triple helical disulfide-bonded domain homologous to type IX and type XII collagens, J. Biol. Chem., 1991, vol. 266, pp. 6853–6858.

    PubMed  CAS  Google Scholar 

  18. Kassner, A., Tiedemann, K., Notbohm, H., Ludwig, T., Mörgelin, M., Reinhardt, D.P., Chu, M.L., Brückner, P., and Grässel, S., Molecular structure and interaction of recombinant human type XVI collagen, J. Mol. Biol., 2004, vol. 339, pp. 835–853.

    Article  PubMed  CAS  Google Scholar 

  19. Tajima, S., Akagi, A., Tanaka, N., Ishibashi, A., Kawada, A., and Yamaguchi, N., Expression of type XVI collagen in cultured skin fibroblasts is related to cell growth arrest, FEBS Lett., 2000, vol. 469, pp. 1–4.

    Article  PubMed  CAS  Google Scholar 

  20. Myers, J.C., Li, D., Amenta, P.S., Clark, C.C., Nagaswami, C., and Weisel, J.W., Type XIX collagen purified from human umbilical cord is characterized by multiple sharp kinks delineating collagenous subdomains and by intermolecular aggregates via globular, disulfide-linked, and hep arin-binding amino termini, J. Biol. Chem., 2003, vol. 278, pp. 32047–32057.

    Article  PubMed  CAS  Google Scholar 

  21. Su, J., Gorse, K., Ramirez, F., and Fox, M.A., Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses, J. Comp. Neurol., 2010, vol. 518, pp. 229–253.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sumiyoshi, H., Mor, N., Lee, S.Y., Doty, S., Henderson, S., Tanaka, S., Yoshioka, H., Rattan, S., and Ramirez, F., Esophageal muscle physiology and morphogenesis require assembly of a collagen XIX-rich basement membrane zone, J. Cell Biol., 2004, vol. 166, pp. 591–600.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Koch, M., Foley, J.E., Hahn, R., Zhou, P., Burgeson, R.E., Gerecke, D.R., and Gordon, M.K., α1(XX) collagen, a new member of the collagen subfamily, fibril-associated collagens with interrupted triple helices, J. Biol. Chem., 2001, vol. 276, pp. 23120–23126.

    Article  PubMed  CAS  Google Scholar 

  24. Chou, M.Y. and Li, H.C., Genomic organization and characterization of the human type XXI collagen (COL21A1) Gene, Genomics, 2002, vol. 79, pp. 395–401.

    Article  PubMed  CAS  Google Scholar 

  25. Fitzgerald, J. and Bateman, J.F., A new FACIT of the collagen family: COL21A1, FEBS Lett., 2001, vol. 505, pp. 275–280.

    Article  PubMed  CAS  Google Scholar 

  26. Koch, M., Schulze, J., Hansen, U., Ashwodt, T., Keen, D.R., Brunken, W.J., Burgeson, R.E., Bruckner, P., and Bruckner-Tuderman, L., A novel marker of tissue junctions, collagen XXII, J. Biol. Chem., 2004, vol. 279, pp. 22514–22521.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Shaw, L.M. and Olsen, B.R., FACIT collagens: diverse molecular bridges in extracellular matrices, Trends Biochem. Sci. 1991, vol. 16, pp. 191–194.

    Article  PubMed  CAS  Google Scholar 

  28. Lessage, A., Penin, F., Geourjon, C., Marion, D., and van der Rest, M., Trimeric assembly and three-dimensional structure model of the FACIT collagen COL1-NC1 junction from CD and NMR analysis, Biochemistry, 1996, vol. 35, pp. 9647–9660.

    Article  Google Scholar 

  29. Gordon, M.K., Castagnola, P., Dublet, B., Linsenmayer, T.F., van der Rest, M., Mayne, R., and Olsen, B.R., Cloning of a cDNA for a new member of the class of fibril-associated collagens with interrupted triple helices, Eur. J. Biochem., 1991, vol. 201, pp. 333–338.

    Article  PubMed  CAS  Google Scholar 

  30. Gordon, M.K., Gerecke, D.R., Dublet, B., van der Rest, M., and Olsen, B.R., Type XII collagen. A large multidomain molecule with partial homology to type IX collagen, J. Biol. Chem., 1989, vol. 264, pp. 19 772–19 778.

    CAS  Google Scholar 

  31. Miles, C.A., Knott, L., Sumner, I.G., and Bailey, A.J., Differences between the thermal stabilities of the three triple-helical domains of type IX collagen, J. Mol. Biol., 1988, vol. 277, pp. 135–144.

    Article  Google Scholar 

  32. Leppänen, V.-M., Tossavainen, H., Permi, P., Lehtiö, L., Rönnholm, G., Goldman, A., Kilpeläinen, I., and Pihlajamaa, T., Crystal structure of the N-terminal NC4 domain of collagen IX, a zinc binding member of the laminin-neurexin-sex hormone binding globulin (LNS) domain family, J. Biol. Chem., 2007, vol. 282, pp. 23219–23230.

    Article  PubMed  Google Scholar 

  33. Vasios, G., Nishimura, I., Konomi, H., van der Rest, M., Ninomiya, Y., and Olsen, B.R., Cartilage type IX collagen-proteoglycan contains a large amino-terminal globular domain encoded by multiple exons, J. Biol. Chem., 1988, vol. 263, pp. 2324–2329.

    PubMed  CAS  Google Scholar 

  34. Eyre, D.R., Wu, J.J., Fernandes, R.J., Pietka, T.A., and Weis, M.A., Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network, Biochem. Soc. Trans., 2002, vol. 30, pp. 893–899.

    Article  PubMed  CAS  Google Scholar 

  35. Wu, J.-J., Woods, P.E., and Eyre, D.R., Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding, J. Biol. Chem., 1992, vol. 267, pp. 23 007–23 014.

    CAS  Google Scholar 

  36. Eyre, D.R., Pietka, T., Weis, M.A., and Wu, J.-J., Covalent cross-linking of the NC1 domain of collagen type IX to collagen type ii in cartilage, J. Biol. Chem., 2004, vol. 279, pp. 2568–2574.

    Article  PubMed  CAS  Google Scholar 

  37. Vaughan, L., Mendler, M., Huber, S., Brückner, P., Winterhalter, K.H., Irwin, M.I., and Mayne, R., D-Periodic distribution of collagen type IX along cartilage fibrils, J. Cell Biol., 1988, vol. 106, pp. 991–997.

    Article  PubMed  CAS  Google Scholar 

  38. Holden, P., Meadows, R.S., Chapman, K.L., Grant, M.E., Kadler, K.E., and Briggs, M.D., Cartilage oligomeric matrix protein interacts with type IX collagen and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family, J. Biol. Chem., 2001, vol. 276, pp. 6046–6055.

    Article  PubMed  CAS  Google Scholar 

  39. Thur, J., Rosenberg, K., Nitsche, D.P., Pihlajamaa, T., Ala-Kokko, L., Heinegard, D., Paulsson, M., and Maurer, P., Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II and IX, J. Biol. Chem., 2001, vol. 276, pp. 6083–6092.

    Article  PubMed  CAS  Google Scholar 

  40. Tillgren, V., Önnerfjord, P., Haglund, L., and Heinegard, D., The tyrosine sulfate-rich domains of the LRR proteins fibromodulin and osteoadherin bind motifs of basic clusters in a variety of heparin-binding proteins, including bioactive fac tors, J. Biol. Chem., 2009, vol. 284, pp. 28 543–28 553.

    Article  CAS  Google Scholar 

  41. Parsons, P., Gilbert, S.J., Vaughan-Thomas, A., Sorrell, D.A., Notman, R., Bishop, M., Hayes, A.J., Mason, D.J., and Duance, L.C., Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage, J. Biol. Chem., 2011, vol. 286, pp. 34 986–34 997.

    Article  CAS  Google Scholar 

  42. Budde, B., Blumbach, K., Ylöstalo, J., Zaucke, F., Ehlen, H.W.A., Wagener, R., Ala-Kokko, L., Paulsson, M., Brückner, P., and Grässel, S., Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX, Mol. Cell. Biol., 2005, vol. 25, pp. 10 465–10 478.

    Article  CAS  Google Scholar 

  43. Klatt, A.R., Becker, A.-K.A., Neacsu, C.D., Paulsson, M., and Wagener, R., The matrilins: modulators of extracellular matrix assembly, Int. J. Biochem. Cell Biol., 2011, vol. 43, pp. 320–330.

    Article  PubMed  CAS  Google Scholar 

  44. Bork, P., The modular architecture of vertebrate collagens, FEBS Lett., 1992, vol. 307, pp. 49–54.

    Article  PubMed  CAS  Google Scholar 

  45. Yamagata, M., Yamada, K.M., Yamada, S.S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M., and Kimata, K., The complete primary structure of type XII collagen shows a chimeric molecule with reiterated fibronectin type III motifs, von Willebrand factor A motifs, a domain homologous to a noncollagenous region of type IX collagen, and short collagenous domains with an Arg-Gly-Asp Site, J. Cell Biol., 1991, vol. 115, pp. 209–221.

    Article  PubMed  CAS  Google Scholar 

  46. Keene, D.R., Lunstrum, G.P., Morris, N.P., Stoddard, D.W., and Burgeson, R.E., Two type XII-like collagens localize to surface of banded collagen fibrils, J. Cell Biol., 1991, vol. 113, pp. 971–978.

    Article  PubMed  CAS  Google Scholar 

  47. Young, B.B., Gordon, M.K., and Birk, D.E., Expression of type XIV collagen in developing chicken tendons: association with assembly and growth of collagen fibrils, Dev. Dyn., 2000, vol. 217, pp. 430–439.

    Article  PubMed  CAS  Google Scholar 

  48. Agarwal, P., Zwolanek, D., Keene, D.R., Schulz, J.-N., Blumbach, K., Heinegard, D., Zaucke, F., Paulsson, M., Krieg, T., Koch, M., and Eckes, B., Collagen XII and XIV-new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure, J. Biol. Chem., 2012, vol. 287, pp. 22549–22559.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Banos, C.C., Thomas, A.H., and Kuo, C.K., Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly, Birth Defects Res., 2008, vol. 84, pp. 228–244.

    Article  CAS  Google Scholar 

  50. Lethias, C., Carisey, A., Comte, J., Cluzel, C., and Exposito, J.-Y., A model of tenascin-X interaction within the collagenous network, FEBS Lett., 2006, vol. 580, pp. 6281–6285.

    Article  PubMed  CAS  Google Scholar 

  51. Marchant, J.K., Zhang, G., and Birk, D.E., Association of type XII collagen with regions of increased stability and keratocyte density in the cornea, Exp. Eye Res., 2002, vol. 75, pp. 683–694.

    Article  PubMed  CAS  Google Scholar 

  52. Veit, G., Hansen, U., Keene, D.R., Brückner, P., Chiquet-Ehrismann, R., Chiquet, M., and Koch, M., Collagen XII interacts with avian tenascin-X through its NC3 domain, J. Biol. Chem., 2006, vol. 281, pp. 27 461–27 470.

    Article  CAS  Google Scholar 

  53. Wälchli, C., Koch, M., Chiquet, M., Odermatt, B.F., and Trueb, B., Tissue-specific expression of the fibril-associated collagens XII and XIV, J. Cell Sci., 1994, vol. 107, pp. 669–681.

    PubMed  Google Scholar 

  54. Young, B.B., Zhang, G., Koch, M., and Birk, D.E., The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea, J. Cell Biochem., 2002, vol. 87, pp. 208–220.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, G., Young, B.B., Ezura, Y., Favata, M., Soslowsky, L.J., Chakravarti, S., and Birk, D.E., Development of tendon structure and function: regulation of collagen fibrillogenesis, J. Musculoskelet. Neuronal. Interact., 2005, vol. 5, pp. 5–21.

    PubMed  CAS  Google Scholar 

  56. Kassner, A., Hansen, U., Miosge, N., Reinhardt, D.P., Aigner, T., Brückner-Tuderman, L., Brückner, P., and Grässel, S., Descrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils, Matrix Biol., 2003, vol. 22, pp. 131–143.

    Article  PubMed  CAS  Google Scholar 

  57. Eble, J.A., Kassner, A., Niland, S., Mörgelin, M., Grifka, J., and Grässel, S., Collagen XVI harbors an integrin α1β1 recognition site in its Cterminal domains, J. Biol. Chem., 2006, vol. 281, pp. 25745–25756.

    Article  PubMed  CAS  Google Scholar 

  58. Ratzinger, S., Eble, J.A., Pasoldt, A., Opolka, A., Rogler, G., Grifka, J., and Grässel, S., Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract, Matrix Biol., 2010, vol. 29, pp. 177–193.

    Article  PubMed  CAS  Google Scholar 

  59. Gelse, K., Pöschl, E., and Aigner, T., Collagensstructure, function, and biosynthesis, Adv. Drug Deliv. Rev., 2003, vol. 55, pp. 1531–1546.

    Article  PubMed  CAS  Google Scholar 

  60. Mazzorana, M., Cogne, S., Goldschmidt, D., and Aubert-Foucher, E., Collagenous sequence governs the trimeric assembly of collagen XII, J. Biol. Chem., 2001, vol. 276, pp. 27 989–27 998.

    Article  CAS  Google Scholar 

  61. Mazzorana, M., Gruffat, H., Sergeant, A., and van der Rest, M., Mechanisms of collagen trimer formation. construction and expression of a recombinant minigene in HeLa cells reveals a direct effect of prolyl hydroxylation on chain assembly of type XII collagen, J. Biol. Chem., 1993, vol. 268, pp. 3029–3032.

    PubMed  CAS  Google Scholar 

  62. Jäälinoja, J., Ylöstalo, J., Beckett, W., Hulmes, D.J.S., and Ala-Kokko, L., Trimerization of collagen IX α-chains does not require the presence of the COL1 and NC1 domains, Biochem. J., 2008, vol. 409, pp. 545–554.

    Article  PubMed  Google Scholar 

  63. Boudko, S.P. and Bächinger, H.P., The NC2 domain of type IX collagen determines the chain register of the triple helix, J. Biol. Chem., 2012, vol. 287, pp. 44536–44545.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Boudko, S.P., Engel, J., and Bächinger, H.P., The crucial role of trimerization domains in collagen folding, Int. J. Biochem. Cell Biol., 2012, vol. 44, pp. 21–32.

    Article  PubMed  CAS  Google Scholar 

  65. Boudko, S.P., Zientek, K.D., Vance, J., Hacker, J.L., Engel J., and Bächinger, H.P., The NC2 domain of collagen IX provides chain selection and heterotrimerization J. Biol. Chem. 2010. vol. 285. P. 23721–23731.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Boudko, S.P., Engel, J., and Bächinger, H.P., Trimerization and triple helix stabilization of the collagen XIX NC2 domain, J. Biol. Chem., 2008, vol. 283, pp. 34 345–34 351.

    Article  CAS  Google Scholar 

  67. McLachlan, A.D. and Stewart, M., Tropomyosin coiled-coil interactions: evidence for an unstaggered structure, J. Mol. Biol., 1975, vol. 98, pp. 293–304.

    Article  PubMed  CAS  Google Scholar 

  68. McAlinden, A., Smith, T.A., Sandell, L.J., Ficheux, D., Parry, D.A.D., and Hulmes, D.J.S., α-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily, J. Biol. Chem., 2003, vol. 278, pp. 42 200–42 207.

    Article  CAS  Google Scholar 

  69. Frank, S., Boudko, S.P., Mizuno, K., Schulthess, T., Engel, J., and Bächinger, H.P., Collagen triple helix formation can be nucleated at either end, J. Biol. Chem., 2003, vol. 278, pp. 7747–7750.

    Article  PubMed  CAS  Google Scholar 

  70. Khaleduzzaman, M., Sumiyoshi, H., Ueki, Y., Inoguchi, K., Ninomiya, Y., and Yoshioka, H., Structure of the human type XIX collagen (COL19A1) gene, which suggests it has arisen from an ancestor gene of the FACIT family, Genomics, 1997, vol. 45, pp. 304–312.

    Article  PubMed  CAS  Google Scholar 

  71. Fitzgerald, J. and Bateman, J.F., Is there an evolutionary relationship between WARP (von Willebrand factor A-domain-related protein) and the FACIT and FACIT-like collagens? FEBS Lett., 2003, vol. 552, pp. 91–94.

    Article  PubMed  CAS  Google Scholar 

  72. Tuckwell, D., Identification and analysis of collagen α1(XXI), a novel member of the FACIT collagen family, Matrix Biol., 2002, vol. 21, pp. 63–66.

    CAS  Google Scholar 

  73. Bently, A.A. and Adams, J.C., The evolution of thrombospondins and their ligand-binding activities, Mol. Biol. Evol., 2010, vol. 27, pp. 2187–2197.

    Article  Google Scholar 

  74. Vizzini, A., Arizza, V., Cervello, M., Cammarata, M., Gambino, R., and Parrinello, N., Cloning and expression of a type IX-like collagen in tissues of the acidian Ciona intestinalis, Biochim. Biophys. Acta, 2002, vol. 1577, pp. 38–44.

    Article  PubMed  CAS  Google Scholar 

  75. Kolchanov, N.A. and Soloviev, V.V., Rearrangements of DNA in sites of repeats and evolution of genome, molecular biology, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow, 1985, vol. 21, pp. 81–116.

    Google Scholar 

  76. Schmidt, E.E. and Davies, C.J., The origins of polypeptide domains, Bioessays, 2007, vol. 29, pp. 262–270.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Hurles, M., Gene duplication: the genomic trade in spare parts, PLoS Biol., 2004, vol. 2, E206.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Magadum, S., Banerjee, U., Murugan, P., Gangapur, D., and Ravikesavan, R., Gene duplication as a major force of evolution, J. Genet., 2013, vol. 92, pp. 155–161.

    Article  PubMed  Google Scholar 

  79. Zhang, J., Evolution by gene duplication: an update, Trends Ecol. Evolut., 2003. vol. 18. P. 292–298.

    Article  Google Scholar 

  80. Franca, G.S., Cancherini, D.V., and de Souza, S.J., Evolutionary history of exon shuffling, Genetica, 2012, vol. 140, pp. 249–257.

    Article  PubMed  Google Scholar 

  81. Kaessmann, H., Zöllner, S., Nekrutenko, A., and Li, W.-H., Signature of domain shuffling in the human genome, Genome Res., 2002, vol. 12, pp. 1642–1650.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Patthy, L., Exon shuffling and other ways of module exchange, Matrix Biol., 1996, vol. 15, pp. 301–310.

    Article  PubMed  CAS  Google Scholar 

  83. Moore, A.D., Björklund, A.K., Ekman, D., Bornberg-Bauer, E., and Elofsson, A., Arrangements in the modular evolution of proteins, Trends Biochem. Sci., 2008, vol. 33, pp. 444–451.

    Article  PubMed  CAS  Google Scholar 

  84. Myers, J.C., Yang, H., D’Ippolito, J.A., Presente, A., Miller, M.K., and Dion, A.S., The triple-helical region of human type XIX collagen consists of multiple collagenous subdomains and exhibits limited sequence homology to α1(XVI), J. Biol. Chem., 1994, vol. 269, pp. 18549–18557.

    PubMed  CAS  Google Scholar 

  85. Bornberg-Bauer, E., Beaussart, F., Kummerfeld, S.K., Teichmann, S.A., and Weiner, III. J., The evolution of domain arrangements in proteins and interaction networks, Cell. Mol. Life Sci., 2005, vol. 62, pp. 435–445.

    Article  PubMed  CAS  Google Scholar 

  86. Nassa, M., Anand, P., Jain, A., Chhabra, A., Jaiswal, A., Malhotra, U., and Rani, V., Analysis of human collagen sequences, Bioinformation, 2012, vol. 8, pp. 26–33.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Paltsev, M.A., Ivanov, A.A., and Severin, S.E., Mezhkletochnye vzaimodeistviya (Intercellular Interactions), Moscow, Meditsina, 2003, 288 p.

    Google Scholar 

  88. Beckmann, G., Hanke, J., Bork, P., and Reich, J.G., Merging extracellular domains: fold prediction for laminin G-like and amino-terminal thrombospondin-like modules based on homology to pentraxins, J. Mol. Biol., 1998, vol. 275, pp. 725–730.

    Article  PubMed  CAS  Google Scholar 

  89. Whittaker, C.A. and Hynes, R.O., Distribution and evolution of von Willebrand/Integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere, Mol. Biol. Cell., 2002, vol. 13, pp. 3369–3387.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ivanova.

Additional information

Original Russian Text © V.P. Ivanova, A.I. Krivchenko, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 4, pp. 245–254.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, V.P., Krivchenko, A.I. Current viewpoint on structure and on evolution of collagens. II. Fibril-associated collagens. J Evol Biochem Phys 50, 273–285 (2014). https://doi.org/10.1134/S0022093014040012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014040012

Key words

Navigation