Skip to main content
Log in

Temperature Dependence of the Fano Resonance in Nanodiamonds Synthesized at High Static Pressures

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The temperature dependence of the Fano resonance recently discovered in infrared spectra of nanodiamonds synthesized from chloroadamantane at high static pressures is investigated. For the first time, marked variations of the resonance parameters are observed. On heating, the shape of the Fano resonance changes considerably; the effect completely disappears above 350°C, but is recovered after cooling to ambient conditions. Such behavior implies that assignment of the Fano effect to the surface transfer doping mechanism is not very plausible for the studied samples. The resonance shape varies due to a strong temperature dependence of the difference between the frequencies of infrared-active “bright” and Raman-active “dark” modes of nanodiamond. The frequency of the Raman dark mode is only weakly temperature-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. U. Fano, Nuovo Cim. 12, 154 (1935).

    Article  ADS  Google Scholar 

  2. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).

    Article  ADS  Google Scholar 

  4. F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).

    Article  ADS  Google Scholar 

  5. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photon. 11, 543 (2017).

    Article  Google Scholar 

  6. M. I. Tribelsky and A. E. Miroshnichenko, Phys. Usp. 65, 40 (2022).

    Article  ADS  Google Scholar 

  7. F. Lapointe, E. Gaufrès, I. Tremblay, N. Y.-W. Tang, R. Martel, and P. Desjardins, Phys. Rev. Lett. 109, 097402 (2012).

  8. P. Gu, X. Cai, G. Wu, C. Xue, J. Chen, Z. Zhang, Z. Yan, F. Liu, C. Tang, W. Du, Z. Huang, and Z. Chen, Nanomaterials 11, 2039 (2021).

    Article  Google Scholar 

  9. M. F. Limonov, Adv. Opt. Photon. 13, 703 (2021).

    Article  Google Scholar 

  10. O. S. Kudryavtsev, R. H. Bagramov, A. M. Satanin, A. A. Shiryaev, O. I. Lebedev, A. M. Romshin, D. G. Pasternak, A. V. Nikolaev, V. P. Filonenko, and I. I. Vlasov, Nano Lett. 22, 2589 (2022).

    Article  ADS  Google Scholar 

  11. E. Ekimov, A. A. Shiryaev, Y. Grigoriev, A. Averin, E. Shagieva, S. Stehlik, and M. Kondrin, Nanomaterials 12, 351 (2022).

    Article  Google Scholar 

  12. V. A. Davydov, A. V. Rakhmanina, S. G. Lyapin, I. D. Ilichev, K. N. Boldyrev, A. A. Shiryaev, and V. N. Agafonov, JETP Lett. 99, 585 (2014).

    Article  ADS  Google Scholar 

  13. E. Ekimov, S. Lyapin, Y. Grigoriev, I. Zibrov, and K. Kondrina, Carbon 150, 436 (2019).

    Article  Google Scholar 

  14. E. Ekimov, M. Kondrin, S. Lyapin, Y. Grigoriev, A. Razgulov, V. Krivobok, S. Gierlotka, and S. Stelmakh, Diamond Relat. Mater. 103, 107718 (2020).

  15. E. Ekimov, K. Kondrina, I. Zibrov, S. Lyapin, M. Lovygin, and P. Kazanskiy, Mater. Res. Bull. 137, 111189 (2021).

  16. M. V. Kondrin, I. P. Zibrov, S. G. Lyapin, Y. V. Grigoriev, R. A. Khmelnitskiy, and E. A. Ekimov, ChemNanoMat 7, 17 (2021).

    Article  Google Scholar 

  17. E. A. Ekimov and M. V. Kondrin, Phys. Usp. 60, 539 (2017).

    Article  ADS  Google Scholar 

  18. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Phys. Rev. Lett. 85, 3472 (2000).

    Article  ADS  Google Scholar 

  19. W. Chen, D. Qi, X. Gao, and A. T. S. Wee, Prog. Surf. Sci. 84, 279 (2009).

    Article  ADS  Google Scholar 

  20. K. G. Crawford, I. Maini, D. A. Macdonald, and D. A. Moran, Prog. Surf. Sci. 96, 100613 (2021).

  21. Y. S. Joe, A. M. Satanin, and C. S. Kim, Phys. Scr. 74, 259 (2006).

    Article  ADS  Google Scholar 

  22. B. Gallinet and O. J. F. Martin, Phys. Rev. B 83, 235427 (2011).

  23. THMSG600 Temperature Controlled Geology Stage, User Guide, Linkam Scientific Instruments. https://linkamscientific.squarespace.com/archivemanuals.

  24. PE95/T95 System Controller. UserGuide, Linkam Scientific Instruments. https://linkamscientific.squarespace.com/archivemanuals.

  25. V. Y. Prokof’ev, I. A. Baksheev, F. Y. Korytov, and J. Touret, C. R. Geosci. 338, 617 (2006).

    Article  Google Scholar 

  26. A. P. Koscheev, in Carbon Nanomaterials for Gas Adsorption (Pan Stanford, New York, 2012), p. 219.

    Google Scholar 

  27. A. Maturilli, A. A. Shiryaev, I. I. Kulakova, and J. Helbert, Spectrosc. Lett. 47, 446 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Stepan Stehlik for discussions.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-52-26017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kondrin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaev, A.A., Ekimov, E.A., Prokof’ev, V.Y. et al. Temperature Dependence of the Fano Resonance in Nanodiamonds Synthesized at High Static Pressures. Jetp Lett. 115, 651–656 (2022). https://doi.org/10.1134/S0021364022600720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022600720

Navigation