Skip to main content
Log in

Superconductor–Insulator Transition in NbTiN Films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Experimental results indicating a direct disorder-induced superconductor–insulator transition in NbTiN thin films have been reported. It has been shown that an increase in the resistance per square in the normal state is accompanied by the suppression of the critical temperature of the superconducting transition Tc according to the fermion mechanism of suppression of superconductivity by disorder. At the same time, the temperature of the Berezinskii–Kosterlitz–Thouless transition is completely suppressed at a nonzero critical temperature and, then, the ground state changes to insulating, which is characteristic of the boson model of suppression of superconductivity by disorder. It has been shown that the temperature dependences of the resistance of insulating films follow the Arrhenius activation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Shal’nikov, Nature (London) 142, 74 (1938).

    Article  ADS  Google Scholar 

  2. A. M. Goldman and N. Markovic, Phys. Today 51 (11), 39 (1998).

    Article  Google Scholar 

  3. V. F. Gantmakher and V. T. Dolgopolov, Phys. Usp. 53, 1 (2010).

    Article  ADS  Google Scholar 

  4. M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow, Phys. Rev. B 1, 1078 (1970).

    Article  ADS  Google Scholar 

  5. A. M. Finkel’shtein, Sov. Phys. JETP 59, 212 (1984).

    Google Scholar 

  6. A. Gold, Phys. Rev. A 33, 652 (1986).

    Article  ADS  Google Scholar 

  7. M. P. A. Fisher, G. Grinstein, and S. Grivin, Phys. Rev. Lett. 64, 587 (1990).

    Article  ADS  Google Scholar 

  8. J. M. Graybeal and M. R. Beasley, Phys. Rev. B 29, 4167 (1984).

    Article  ADS  Google Scholar 

  9. A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995).

    Article  ADS  Google Scholar 

  10. S. Okuma, T. Terashima, and N. Kokubo, Phys. Rev. B 58, 2816 (1998).

    Article  ADS  Google Scholar 

  11. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).

    Article  ADS  Google Scholar 

  12. D. Shahar, Z. Ovadyahu, and A. M. Goldman, Phys. Rev. B 46, 10917 (1992).

    Article  ADS  Google Scholar 

  13. V. Gantmakher, M. V. Golubkov, V. T. Dolgopolov, G. E. Tsydynzhapov, and A. A. Shashkin, Physica B 284-288, 649 (2000).

    Article  ADS  Google Scholar 

  14. E. Bielejec, J. Ruan, and W. Wu, Phys. Rev. B 63, 100502 (2001).

    Article  ADS  Google Scholar 

  15. T. I. Baturina, A. Yu. Mironov, V. M. Vinokur, M. R. Baklanov, and C. Strunk, Phys. Rev. Lett. 99, 257003 (2007).

    Article  ADS  Google Scholar 

  16. M. V. Feigelman, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, Ann. Phys. 325, 1390 (2010).

    Article  ADS  Google Scholar 

  17. T. I. Baturina and V. M. Vinokur, Ann. Phys. 331, 236 (2013).

    Article  ADS  Google Scholar 

  18. J. R. Gavaler, M. A. Janocko, A. Patterson, and C. K. Jones, J. Appl. Phys. 42, 54 (1971).

    Article  ADS  Google Scholar 

  19. J. Jesudasan, M. Mondal, M. Chand, A. Kamlapure, S. Kumar, G. Saraswat, V. C. Bagwe, V. Tripathi, and P. Raychaudhuri, AIP Conf. Proc. 1349, 923 (2011).

    Article  ADS  Google Scholar 

  20. M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J. Jesudasan, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Phys. Rev. Lett. 106, 047001 (2011).

    Article  ADS  Google Scholar 

  21. R. W. Simon, B. J. Dalrymple, D. Van Vechten, W. W. Fuller, and S. A. Wolf, Phys. Rev. B 36, 1962 (1987).

    Article  ADS  Google Scholar 

  22. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

    Article  ADS  Google Scholar 

  23. L. G. Aslamasov and A. I. Larkin, Phys. Lett. A 26, 238 (1968).

    Article  ADS  Google Scholar 

  24. K. Maki, Prog. Theor. Phys. 39, 897 (1968).

    Article  ADS  Google Scholar 

  25. R. S. Thompson, Phys. Rev. B 39, 327 (1970).

    Article  ADS  Google Scholar 

  26. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).

    Article  ADS  Google Scholar 

  27. B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980).

    Article  ADS  Google Scholar 

  28. B. L. Al’tshuler, A. A. Varlamov, and M. Yu. Reizer, Sov. Phys. JETP 57, 1329 (1983).

    Google Scholar 

  29. V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1971).

    ADS  Google Scholar 

  30. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

    Article  ADS  Google Scholar 

  31. J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).

    Article  ADS  Google Scholar 

  32. B. I. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979).

    Article  ADS  Google Scholar 

  33. S. Doniach and B. A. Huberman, Phys. Rev. Lett. 42, 1169 (1979).

    Article  ADS  Google Scholar 

  34. M. J. Buckingham and W. M. Fairbank, Prog. Low Temp. Phys. 3, 80 (1961).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Mironov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdastyh, M.V., Postolova, S.V., Baturina, T.I. et al. Superconductor–Insulator Transition in NbTiN Films. Jetp Lett. 106, 749–753 (2017). https://doi.org/10.1134/S0021364017230060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017230060

Navigation