Skip to main content
Log in

Electronic structure of NaFeAs superconductor: LDA+DMFT calculations compared to the ARPES experiment

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We present the results of extended theoretical LDA+DMFT calculations for a new iron-pnictide high temperature superconductor NaFeAs compared with the recent high quality angle-resolved photoemission (ARPES) experiments on this system (see arXiv:1409.1537). The universal manifestation of correlation effects in iron-pnictides is narrowing of conducting bands near the Fermi level. Our calculations demonstrate that for NaFeAs the effective mass is renormalized on average by a factor of the order of 3, in good agreement with ARPES data. This is essentially due to correlation effects on Fe-3d orbitals only and no additional interactions with any kind of Boson modes, as suggested in the work mentioned, are necessary to describe the experiment. In addition, we show that ARPES data taken at about 160 eV beam energy most probably corresponds to k z = π Brillouin zone boundary, while ARPES data measured at about 80 eV beam energy rather represents k z = 0. Contributions of different Fe-3d orbitals into spectral function map are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. M. V. Sadovskii, Phys. Usp. 51, 1243 (2008).

    Article  Google Scholar 

  3. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  ADS  Google Scholar 

  4. D. C. Johnson, Adv. Phys. 59, 803 (2010).

    Article  ADS  Google Scholar 

  5. P. J. Hirshfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  6. M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).

    Article  ADS  Google Scholar 

  7. I. A. Nekrasov and M. V. Sadovskii, JETP Lett. 99, 598 (2014).

    Article  ADS  Google Scholar 

  8. J. H. Tapp, Zh. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505(R) (2008).

    Article  ADS  Google Scholar 

  9. X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Commun. 11–12, 538 (2008).

    Article  Google Scholar 

  10. I. A. Nekrasov, Z. V. Pchelkina, and M. V. Sadovskii, JETP Lett. 88, 543 (2008).

    Article  ADS  Google Scholar 

  11. I. R. Shein and A. L. Ivanovskii, JETP Lett. 88, 329 (2008).

    Article  ADS  Google Scholar 

  12. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  13. A. A. Kordyuk, Low Temp. Phys. 38, 888 (2012).

    Article  ADS  Google Scholar 

  14. P. Popovich, A. V. Boris, O. V. Dolgov, A. A. Golubov, D. L. Sun, C. T. Lin, R. K. Kremer, and B. Keimer, Phys. Rev. Lett. 105, 027003 (2010).

    Article  ADS  Google Scholar 

  15. S. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Büchner, Phys. Rev. Lett. 105, 067002 (2010).

    Article  ADS  Google Scholar 

  16. H. Ding, K. Nakayama, P. Richard, S. Souma, T. Sato, T. Takahashi, M. Neupane, Y.-M. Xu, Z.-H. Pan, A. V. Fedorov, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, J. Phys.: Condens. Matter 23, 135701 (2011).

    ADS  Google Scholar 

  17. S. T. Cui, S. Y. Zhu, A. F. Wang, S. Kong, S. L. Ju, X. G. Luo, X. H. Chen, G. B. Zhang, and Z. Sun, Phys. Rev. B 86, 155143 (2012).

    Article  ADS  Google Scholar 

  18. D. V. Evtushinsky, V. B. Zabolotnyy, T. K. Kim, A. A. Kordyuk, A. N. Yaresko, J. Maletz, S. Aswartham, S. Wurmehl, A. V. Boris, D. L. Sun, C. T. Lin, B. Shen, H. H. Wen, A. Varykhalov, R. Follath, B. Büchner, and S. V. Borisenko, Phys. Rev. B 89, 064514 (2014).

    Article  ADS  Google Scholar 

  19. K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008).

    Article  ADS  Google Scholar 

  20. L. Craco, M. S. Laad, S. Leoni, and H. Rosner, Phys. Rev. B 78, 134511 (2008).

    Article  ADS  Google Scholar 

  21. A. O. Shorikov, M. A. Korotin, S. V. Streltsov, D. M. Korotin, and V. I. Anisimov, J. Exp. Theor. Phys. 108, 121 (2008).

    Article  ADS  Google Scholar 

  22. S. L. Skornyakov, A. V. Efremov, N. A. Skorikov, M. A. Korotin, Yu. A. Izyumov, V. I. Anisimov, A. V. Kozhevnikov, and D. Vollhardt, Phys. Rev. B 80, 092501 (2009).

    Article  ADS  Google Scholar 

  23. K. Held, I. A. Nekrasov, N. Blümer, V. I. Anisimov, and D. Vollhardt, Int. J. Mod. Phys. B 15, 2611 (2001)

    Article  ADS  Google Scholar 

  24. G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

    Article  ADS  Google Scholar 

  25. D. V. Evtushinsky, A. N. Yaresko, V. B. Zabolotnyy, J. Maletz, T. K. Kim, A. A. Kordyuk, M. S. Viazovska, M. Roslova, I. Morozov, R. Beck, S. Wurmehl, H. Berger, B. Buechner, and S. V. Borisenko, arXiv:1409.1537.

  26. D. R. Parker, M. J. Pitcher, P. J. Baker, I. Franke, T. Lancaster, S. J. Blundell, and S. J. Clarke, Chem. Commun. 16, 2189 (2009).

    Article  Google Scholar 

  27. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Tech. Univ. Wien, Austria, 2001).

    Google Scholar 

  28. P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

    Article  ADS  Google Scholar 

  29. K. Haule, Phys. Rev. B 75, 155113 (2007)

    Article  ADS  Google Scholar 

  30. E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  31. M. Ferrero and O. Parcollet, M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009); http://ipht.cea.fr/triqs

    Article  ADS  Google Scholar 

  32. L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Phys. Rev. B 84, 075145 (2011).

    Article  ADS  Google Scholar 

  33. J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held, Comp. Phys. Commun. 181, 1888 (2010).

    Article  MATH  ADS  Google Scholar 

  34. A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

    Article  MATH  ADS  Google Scholar 

  35. S. L. Skornyakov, D. Y. Novoselov, T. Gurel, and V. I. Anisimov, JETP Lett. 96, 118 (2012).

    Article  ADS  Google Scholar 

  36. J. Ferber, K. Foyevtsova, R. Valent, and H. O. Jeschke, Phys. Rev. B 85, 094505 (2012).

    Article  ADS  Google Scholar 

  37. G. Lee, H. S. Ji, Y. Kim, Ch. Kim, K. Haule, G. Kotliar, B. Lee, S. Khim, K. H. Kim, K. S. Kim, Ki-S. Kim, and J. H. Shim, Phys. Rev. Lett. 109, 177001 (2012).

    Article  ADS  Google Scholar 

  38. M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  39. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  40. S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Büchner, Phys. Rev. Lett. 105, 067002 (2010).

    Article  ADS  Google Scholar 

  41. M. Yi, D. H. Lu, R. G. Moore, K. Kihou, C.-H. Lee, A. Iyo, H. Eisaki, T. Yoshida, A. Fujimori, and Z.-X. Shen, New J. Phys. 14, 073019 (2012).

    Article  ADS  Google Scholar 

  42. S. T. Cui, S. Y. Zhu, A. F. Wang, S. Kong, S. L. Ju, X. G. Luo, X. H. Chen, G. B. Zhang, and Z. Sun, Phys. Rev. B 86, 155143 (2012).

    Article  ADS  Google Scholar 

  43. J. Fink, A. Charnukha, E. D. L. Rienks, Z. H. Liu, S. Thirupathaiah, I. Avigo, F. Roth, H. S. Jeevan, P. Gegenwart, M. Roslova, I. Morozov, S. Wurmehl, U. Bovensiepen, S. Borisenko, M. Vojta, and B. Buchner, arXiv:1501.02135.

  44. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 97, 15 (2013)

    Article  ADS  Google Scholar 

  45. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 117, 926 (2013).

    Article  ADS  Google Scholar 

  46. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 95, 581 (2012).

    Article  ADS  Google Scholar 

  47. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 116, 620 (2013).

    Article  ADS  Google Scholar 

  48. See Supplemental Material.

  49. V. Brouet, M. F. Jensen, P.-H. Lin, A. Taleb-Ibrahimi, P. Le Foevre, F. Bertran, Ch.-H. Lin, W. Ku, A. Forget, and D. Colson, Phys. Rev. B 86, 075123 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nekrasov.

Additional information

The article is published in the original.

See the supplemental material for this paper at www.jetpletters.ac.ru.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, I.A., Pavlov, N.S. & Sadovskii, M.V. Electronic structure of NaFeAs superconductor: LDA+DMFT calculations compared to the ARPES experiment. Jetp Lett. 102, 26–31 (2015). https://doi.org/10.1134/S0021364015130123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015130123

Keywords

Navigation