Skip to main content
Log in

Study of Sensitivity Distribution Along the Contour of a Fiber-Optic Sensor Based on a Sagnac Interferometer

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The sensitivity of the Sagnac interferometer for various acoustic influence coordinates was studied. The principles of the formation of a dead zone in an acoustic distributed fiber-optic sensor based on the Sagnac interferometer have been obtained and experimentally confirmed. The response of the interferometer was studied for different types of acoustic impact on the circuit: in the form of a rectangular pulse, sinusoidal, and in the form of a periodic triangular function. The nature of the change in the phase difference at the output of the Sagnac interferometer for each of them was studied. With the found value of the typical frequency \({{f}_{{{\text{t}}{\text{,hit}}}}}\) = 10.8 kHz and a loop length of 20 km, numerical simulation and experimental study of the amplitude of the phase difference under acoustic impact through each 1 km of the loop in the range from 0 to 10 km were carried out. A dead zone elimination method is proposed for integrating the Sagnac interferometer into a complex monitoring system using a phase-sensitive optical time domain reflectometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gorshkov, B.G., Yüksel, K., Fotiadi, A.A., Wuilpart, M., Korobko, D.A., Zhirnov, A.A., Stepanov, K.V., Turov, A.T., Konstantinov, Y.A., and Lobach, I.A, Sensors, 2022, vol. 22, no. 3, p. 1033. https://doi.org/10.3390/s22031033

    Article  ADS  Google Scholar 

  2. Zhirnov, A.A., Stepanov, K.V., Sazonkin, S.G., Choban, T.V., Koshelev, K.I., Chernutsky, A.O., Pnev, A.B., Novikov, A.O., and Yagodnikov, D.A, Sensors, 2021, vol. 21, no. 23, p. 7836. https://doi.org/10.3390/s21237836

    Article  ADS  Google Scholar 

  3. Choban, T.V., Zhirnov, A.A., Chernutsky, A.O., Stepanov, K.V., Pniov, A.B., Galzerano, G., Karasik, V.E., and Svelto, C., J. Phys.: Conf. Ser., 2019, vol. 1410, no. 1, p. 012108. https://doi.org/10.1088/1742-6596/1410/1/012108

    Article  Google Scholar 

  4. Peng, F., Wu, H., Jia, X.-H., Rao, Y.-J., Wang, Z.-N., and Peng, Z.-P., Opt. Express, 2014, vol. 22, no. 11, p. 13804. https://doi.org/10.1364/OE.22.013804

    Article  ADS  Google Scholar 

  5. Stepanov, K.V., Zhirnov, A.A., Chernutsky, A.O., Koshelev, K.I., Pnev, A.B., Lopunov, A.I., and Butov, O.V, Sensors, 2020, vol. 20, p. 6431. https://doi.org/10.3390/s20226431

    Article  ADS  Google Scholar 

  6. Stepanov, K.V., Zhirnov, A.A., Chernutsky, A.O., Choban, T.V., Pnev, A.B., Lopunov, A.I., and Butov, O.V, Proc. 2020 IEEE Int. Conference Laser Optics (ICLO), St. Petersburg, 2020, p. 1. https://doi.org/10.1109/ICLO48556.2020.9285505

  7. Pi, S., Wang, B., Zhao, J., Hong, G., Zhao, D., and Jia, B., Proc. SPIE, 2014, vol. 9203, p. 92030Y. https://doi.org/10.1117/12.2059925

    Article  ADS  Google Scholar 

  8. Liu, K., Jin, X., Jiang, J., Xu, T., Ding, Z., Huang, Y., Sun, Z., Xue, K., Li, S., and Liu, T, IEEE Sens. J., 2022, vol. 22, p. 21428. https://doi.org/10.1109/JSEN.2022.3213036

    Article  ADS  Google Scholar 

  9. Zhirnov, A.A., Choban, T.V., Stepanov, K.V., Koshelev, K.I., Chernutsky, A.O., Pnev, A.B., and Karasik, V.E., Sensors, 2022, vol. 22, no. 7, p. 2772. https://doi.org/10.3390/s22072772

    Article  ADS  Google Scholar 

  10. Spammer, J., Swart, L., and Chtcherbakov, A., J. Lightwave Technol., 1997, vol. 15, no. 6, p. 972. https://doi.org/10.1109/50.588669

    Article  ADS  Google Scholar 

  11. Choban, T.V., Zhirnov, A.A., Tolstoguzov, V.L., Tikhomirov, S.V., Pnev, A.B., Karasik, V.E., and Svelto, C., Proc. 2020 IEEE Int. Conference Laser Optics 2020 (ICLO), St. Petersburg, 2020, p. 1. https://doi.org/10.1109/ICLO48556.2020.9285542

  12. Huang, J., Chen, Y., Peng, H., Zhou, P., Song, Q., Huang, P., Xiao, Q., and Jia, B., Opt. Commun., 2021, vol. 57, no. 2, p. 027104. https://doi.org/10.1016/j.optcom.2020.126420

    Article  Google Scholar 

  13. Choban, T.V., Zhirnov, A.A., Stepanov, K.V., Khan, R.I., Pniov, A.B., Svelto, C., Lopunov, A.I., and Butov, O.V., Proc. 2022 IEEE Int. Conference Laser Optics, St. Petersburg, 2022, p. 1. https://doi.org/10.1109/ICLO54117.2022.9839786

  14. Shimizu, T., Nakajima, K., Shiraki, K., Ieda, K., and Sankawa, I., Opt. Fiber Technol., 2008, vol. 14, p. 10. https://doi.org/10.1016/j.yofte.2007.04.004

    Article  ADS  Google Scholar 

  15. Krakenes, K. and Blotekjaer, K., Opt. Lett., 1989, vol. 14, no. 20, p. 1152. https://doi.org/10.1364/OL.14.001152

    Article  ADS  Google Scholar 

  16. Zhang, G., Xi, C., Liang, Y., and Zuo, H., Proc. 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Harbin, 2011, vol. 2, p. 1598. https://doi.org/10.1109/CSQRWC.2011.6037279

  17. Teng, F., Yi, D., Hong, X., and Li, X., Opt. Express, 2021, vol. 29, no. 9, p. 13696. https://doi.org/10.1364/OE.421569

    Article  ADS  Google Scholar 

  18. Ma, P., Liu, K., Sun, Z., Jiang, J., Wang, S., Xu, T., Xu, Z., and Liu, T., Opt. Laser Eng., 2020, vol. 129, p. 106060. https://doi.org/10.1016/j.optlaseng.2020.106060

    Article  Google Scholar 

  19. Kondrat, M., Szustakowski, M., Patka, N., Ciurapinski, W., and Zyczkowski, M, Opto-Electron. Rev., 2007, vol. 15, no. 3, p. 127. https://doi.org/10.2478/s11772-007-0012-x

    Article  ADS  Google Scholar 

  20. Mangmeng, C., Ali, M., and Gilberto, B., Opt. Express, 2019, vol. 27, no. 7, p. 9684. https://doi.org/10.1364/OE.27.009684

    Article  Google Scholar 

  21. Wang, B., Yu, X., Wu, H., Zhang, J., and Meng, X., Opt. Commun., 2017, vol. 382, p. 272. https://doi.org/10.1016/j.optcom.2016.07.022

    Article  ADS  Google Scholar 

  22. McAulay, A. and Wang, J., Proc. SPIE, 2004, vol. 5435. https://doi.org/10.1117/12.542834

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-29-01577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Gritsenko.

Additional information

International conference “Optical Reflectometry, Metrology, & Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, T.V., Dyakova, N.V., Zhirnov, A.A. et al. Study of Sensitivity Distribution Along the Contour of a Fiber-Optic Sensor Based on a Sagnac Interferometer. Instrum Exp Tech 66, 788–794 (2023). https://doi.org/10.1134/S002044122305010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122305010X

Navigation