Skip to main content
Log in

2D Surface Spin Waves in Dynamic Magnonic Crystals Created by a Surface Acoustic Wave in YIG Films

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

2D surface magnetostatic waves (SMSWs) have been investigation in dynamic magnonic crystals (DMCs) produced by a surface acoustic wave (SAW) in a structure with an yttrium−iron garnet (YIG) film; the technique and results of this investigation are presented. The methods used to study the dependences as functions of the angle between the SMSW and SAW wave vectors are described. The angular dependences of the magnonic bandgap frequencies have been measured. It has been established that bandgaps with the transformation of a reflected SMSW into other types of magnetostatic waves (MSWs) exist at any value of the angle, while bandgaps in which a reflected SMSW does not experience transformation appear in a certain narrower range of angles. The angles of the directions of the wave vectors and the Poynting vector of the reflected SMSW have also been measured. These results are in good agreement with the calculation performed using the isofrequency curves method and the laws of inelastic SMSW scattering from a SAW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vasseur, J.O., Dobrzynski, L., and Djafari-Rouhani, B., Phys. Rev., 1996, vol. 54, p. 1043.

    Article  ADS  Google Scholar 

  2. Puszkarski, H. and Krawczyk, M., Phys. Lett., 2001, vol. 282, p. 106.

    Article  Google Scholar 

  3. Gulyaev, Yu.V., Nikitov, S.A., Zhivotovskii, L.V., Klimov, A.A., Taiad, F., Presmanes, L., Bonin, K., Tsai, Ch.S., Vysotskii, S.L., and Filimonov, Yu.A., JETP Lett., 2003, vol. 77, no. 10, p. 567.

    Article  ADS  Google Scholar 

  4. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Kostylev, M.P., Tiberkevich, V.S., and Hillebrands, B., Phys. Rev. Lett., 2012, vol. 108, p. 257207.

    Article  ADS  Google Scholar 

  5. Gallardo, R.A., Schneider, T., Roldan-Molina, A., Langer, M., Fassbender, J., Lenz, K., Lindner, J., and Landeros, P., Phys. Rev. B, 2018, vol. 97, no. 14, p. 144405.

    Article  ADS  Google Scholar 

  6. Chumak, A.V., Serga, A.A., and Hillebrands, B., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 24, p. 244001.

    Article  ADS  Google Scholar 

  7. Sadovnikov, A.V., Odintsov, S.A., Beginin, E.N., Grachev, A.A., Gubanov, V.A., Sheshukova, S.E., Sharaevskii, Yu.P., and Nikitov, S.A., JETP Lett., 2018, vol. 107, p. 25.

    Article  ADS  Google Scholar 

  8. Kryshtal’, R.G. and Medved’, A.V., Radiotekhnika (Moscow), 2015, no. 8, p. 38.

  9. Gubanov, V.A., Sheshukova, S.E., Nikitov, S.A., and Sadovnikov, A.V., J. Phys. D: Appl. Phys., 2021, vol. 54, p. 245001.

    Article  ADS  Google Scholar 

  10. Kryshtal, R.G. and Medved, A.V., Appl. Phys. Lett., 2012, vol. 100, no. 19, p. 192410.

    Article  ADS  Google Scholar 

  11. Mednikov, A.M., Popkov, A.F., Anisimkin, V.I., Nam, B.P., Petrov, A.A., Spivakov, A.A., and Khe, A.S., Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 33, no. 5, p. 632.

    Google Scholar 

  12. Popkov, A.F., Mikroelektronika, 1981, no. 5, p. 446.

  13. Popkov, A.F., Fiz. Met. Metalloved., 1985, vol. 59, no. 3, p. 463.

    Google Scholar 

  14. Gulyaev, Yu.V., Kryshtal’, R.G., Medved’, A.V., and Sorokin, V.G, Pis’ma Zh. Tekh. Fiz., 1986, vol. 12, no. 9, p. 502.

    Google Scholar 

  15. Kryshtal’, R.G., Medved’, A.V., Nikitin, I.P., and Drobyazko, I.B., Zh. Tekh. Fiz., 1986, vol. 56, no. 9, p. 1835.

    Google Scholar 

  16. Kryshtal', R.G., Medved’, A.V., and Popkov, A.F., Radiotekh. Electron., 1994, vol. 39, p.647.

    ADS  Google Scholar 

  17. Hanna, S.M., Murphy, G.P., Sabetfakhri, K., and Stratakis, K., Proc. IEEE Ultrasonics Symposium, Honolulu, HI, 1990, vol. 1, p. 209.

  18. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2019, vol. 491, p. 165599.

    Article  Google Scholar 

  19. Kryshtal, R.G. and Medved, A.V., Instrum. Exp. Tech., 2021, vol. 64, no. 1, p. 121. https://doi.org/10.1134/S0020441221010267

    Article  Google Scholar 

  20. Kryshtal', R.G. and Medved’, A.V., Ultrasonics, 2019, vol. 94, p. 60.

    Article  Google Scholar 

  21. Kryshtal, R.G., Kundin, A.P., and Medved, A.V., Instrum. Exp. Tech., 2019, vol. 62, no. 1, p. 42. https://doi.org/10.1134/S0020441219010123

    Article  Google Scholar 

  22. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2015, vol. 395, p. 180.

    Article  ADS  Google Scholar 

  23. Lokk, E.G., Usp. Fiz. Nauk, 2008, vol. 178, no. 397, p. 417.

    Google Scholar 

  24. Kryshtal', R.G. and Medved’, A.V., Zh. Tekh. Fiz., 1987, vol. 57, p. 1936.

    Google Scholar 

  25. Voronenko, A.V. and Gerus, S.V., Pis’ma Zh. Tekh. Fiz., 1986, vol. 12, no. 10, p. 632.

    Google Scholar 

  26. Kryshtal’, R.G., Medved’, A.V., Osipenko, V.A., and Shakhnazaryan, D.G., Pis’ma Zh. Tekh. Fiz., 1986, vol. 12, no. 23, p. 1448.

    Google Scholar 

  27. Kryshtal, R.G. and Medved, A.V., J. Phys. D: Appl. Phys., 2017, vol. 50, p. 495004.

    Article  ADS  Google Scholar 

  28. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2017, vol. 426, p. 666.

    Article  ADS  Google Scholar 

  29. Damon, R.W. and Eshbach, J.R., J. Phys. Chem. Solids, 1961, vol. 19, nos. 3–4, p. 308.

    Article  ADS  Google Scholar 

  30. Lax, N. and Batton, K.J., Microwave Ferrites and Ferrimagnetics, New York: McGraw-Hill, 1962.

    Google Scholar 

Download references

Funding

This work was a part of a state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Medved.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medved, A.V. 2D Surface Spin Waves in Dynamic Magnonic Crystals Created by a Surface Acoustic Wave in YIG Films. Instrum Exp Tech 65, 318–325 (2022). https://doi.org/10.1134/S0020441222020154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222020154

Navigation