Skip to main content
Log in

Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we systematically investigate the magnetic domain structure of Fe4GeTe2 single crystals, employing a cryogenic vector-field magnetic force microscope to probe its temperature and magnetic field dependencies. The material undergoes a spin-reversal transition at around 110 K, leading to a gradual magnetization reorientation from in-plane to out-of-plane as temperature decreases. Our observations reveal a complex domain structure featuring striped shapes enclosed by wavy closed loops, exhibiting limited sensitivity to temperature variations without an external magnetic field. When subject to an out-of-plane magnetic field, the domain structure transforms into micrometric elongated striped shapes, gradually evolving into a more irregular pattern. Conversely, in in-plane measurements, the system displays an inhomogeneous distribution of micrometric bubble-like domains, progressively interconnecting into striped shapes. These distinctive responses are attributed to the interplay between small uniaxial and shape anisotropies within the material. Our findings contribute to a deeper understanding of the magnetic domain dynamics in van der Waals ferromagnetic materials, laying the groundwork for further investigations and potential applications in electronic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque A, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash SP (2023) A room-temperature spin-valve with van der Waals ferromagnet Fe5GeTe2/graphene heterostructure. Adv Mater 35:2209113. https://doi.org/10.1002/adma.202209113

    Article  CAS  Google Scholar 

  2. Chen X, Wang H, Li M, Hao Q, Cai M, Dai H, Chen H, Xing Y, Liu J, Wang X, Zhai T, Zhou X, Han JB (2023) Manipulation and optical detection of artificial topological phenomena in 2D van der Waals Fe5GeTe2/MnPS3 heterostructures. Adv Sci 10:2207617. https://doi.org/10.1002/advs.202207617

    Article  CAS  Google Scholar 

  3. Yang S, Zhang T, Jiang C (2020) Van der Waals magnets: material family, detection and modulation of magnetism, and perspective in spintronics. Adv Sci 8:2002488. https://doi.org/10.1002/advs.202002488

    Article  CAS  Google Scholar 

  4. Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu ZQ, Cava RJ, Louie SG, Xia J, Zhang X (2017) Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–269. https://doi.org/10.1038/nature22060

    Article  CAS  PubMed  Google Scholar 

  5. Song T, Tu MW-Y, Carnahan C, Cai X, Taniguchi T, Watanabe K, McGuire MA, Cobden DH, Xiao D, Yao W, Xu X (2019) Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett 19:915–920. https://doi.org/10.1021/acs.nanolett.8b04160

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Li T, Li J, Jiang Y, Yuan J, Li H (2020) Perfect spin filtering effect on Fe3GeTe2-based van der Waals magnetic tunnel junctions. J Phys Chem C 124:27429–27435. https://doi.org/10.1021/acs.jpcc.0c09432

    Article  CAS  Google Scholar 

  7. Arai M, Moriya R, Yabuki N, Masubuchi S, Ueno K, Machida T (2015) Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett 107:103107. https://doi.org/10.1063/1.4930311

    Article  CAS  Google Scholar 

  8. Zhu W, Zhu Y, Zhou T, Zhang X, Lin H, Cui Q, Yan F, Wang Z, Deng Y, Yang H, ZhaoZuti´c I, L, Belashchenko KD, Wang, K, (2023) Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nat Commun 14:5371. https://doi.org/10.1038/s41467-023-41077-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ai L, Zhang E, Yang J, Xie X, Yang Y, Jia Z, Zhang Y, Liu S, Li Z, Leng P, Cao X, Sun X, Zhang T, Kou X, Han Z, Xiu F, Dong S (2021) Van der Waals ferromagnetic josephson junctions. Nat Commun 12:6580. https://doi.org/10.1038/s41467-021-26946-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kang K, Berger H, Watanabe K, TaniguchiForr´o L, T, Shan, J, Mak, KF, (2022) van der Waals π josephson junctions. Nano Lett 22:5510–5515. https://doi.org/10.1021/acs.nanolett.2c01640

    Article  CAS  PubMed  Google Scholar 

  11. Zhu F, Zhang L, Wang X, dos Santos FJ, Song J, Mueller T, Schmalzl K, Schmidt WF, Ivanov A, Park JT, Xu J, Ma J, Lounis S, Blügel S, Mokrousov Y, Su Y, Brückel T (2021) Topological magnon insulators in two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: toward intrinsic gap-tunability. Sci Adv 7:7532. https://doi.org/10.1126/sciadv.abi7532

    Article  CAS  Google Scholar 

  12. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu X (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273. https://doi.org/10.1038/nature22391

    Article  CAS  PubMed  Google Scholar 

  13. Kim M, Kumaravadivel P, Birkbeck J, Kuang W, Xu SG, Hopkinson DG, Knolle J, McClarty PA, Berdyugin AI, Ben Shalom M, Gorbachev RV, Haigh SJ, Liu S, Edgar JH, Novoselov KS, Grigorieva IV, Geim AK (2019) Micromagnetometry of two-dimensional ferromagnets. Nat Electron 2:457–463. https://doi.org/10.1038/s41928-019-0302-6

    Article  CAS  Google Scholar 

  14. Deiseroth H-J, Aleksandrov K, Reiner C, Kienle L, Kremer RK (2006) Fe3GeTe2 and Ni3GeTe2-two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur J Inorg Chem 2006:1561–1567. https://doi.org/10.1002/ejic.200501020

    Article  CAS  Google Scholar 

  15. May AF, Bridges CA, McGuire MA (2019) Physical properties and thermal stability of Fe5−xGeTe2 single crystals. Phys Rev Mater 3:104401. https://doi.org/10.1103/PhysRevMaterials.3.104401

    Article  CAS  Google Scholar 

  16. Zhang H, Chen R, Zhai K, Chen X, Caretta L, Huang X, Chopdekar RV, Cao J, Sun J, Yao J, Birgeneau R, Ramesh R (2020) Itinerant ferromagnetism in van der Waals Fe5−xGeTe2 crystals above room temperature. Phys Rev B 102:064417. https://doi.org/10.1103/PhysRevB.102.064417

    Article  CAS  Google Scholar 

  17. Seo J, Kim DY, An ES, Kim K, Kim GY, Hwang SY, Kim DW, Jang BG, Kim H, Eom G, Seo SY, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo YJ, Lee J, Min BI, Jo MH, Yeom HW, Choi SY, Shim JH, Kim JS (2020) Nearly room temperature ferromagnetism in a magnetic-metal-rich van der Waals metal. Sci Adv 6:8912. https://doi.org/10.1126/sciadv.aay8912

    Article  CAS  Google Scholar 

  18. Stahl J, Shlaen E, Johrendt D (2018) The van der Waals ferromagnets Fe5−δGeTe2 and Fe5−δ−xNixGeTe2—crystal structure, stacking faults, and magnetic properties. Z Anorg Allg Chem 644:1923–1929. https://doi.org/10.1002/zaac.201800456

    Article  CAS  Google Scholar 

  19. May AF, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire MA (2019) Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13:4436–4442. https://doi.org/10.1021/acsnano.8b09660

    Article  CAS  PubMed  Google Scholar 

  20. Tan C, Lee J, Jung SG, Park T, Albarakati S, Partridge J, Field MR, McCulloch DG, Wang L, Lee C (2018) Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat Commun 9:1554. https://doi.org/10.1038/s41467-018-04018-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May AF, Wu W, Cobden DH, Chu J-H, Xu X (2018) Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nature Mater 17:778–782. https://doi.org/10.1038/s41563-018-0149-7

    Article  CAS  Google Scholar 

  22. Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, Wang W (2020) Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett 20:2868–2873. https://doi.org/10.1021/acs.nanolett.9b03453

    Article  CAS  Google Scholar 

  23. Fujita R, Bassirian P, Li Z, Guo Y, Mawass MA, Kronast F, van der Laan G, Hesjedal T (2022) Layer-dependent magnetic domains in atomically thin Fe5GeTe2. ACS Nano 16:10545–10553. https://doi.org/10.1021/acsnano.2c01948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wu Y, Francisco B, Chen Z, Wang W, Zhang Y, Wan C, Han X, Chi H, Hou Y, Lodesani A, Yin G, Liu K, Cui YT, Wang KL, Moodera JS (2022) A van der Waals interface hosting two groups of magnetic skyrmions. Adv Mater 34:2110583. https://doi.org/10.1002/adma.202110583

    Article  CAS  Google Scholar 

  25. Schmitt M, Denneulin T, Kovács A, Saunderson T, Rüssmann P, Shahee A, Scholz T, Tavabi A, Gradhand M, Mavropoulos P, Lotsch BV, Dunin-Borkowski RE, Mokrousov Y, Blügel S, Kläui M (2022) Skyrmionic spin structures in layered Fe5GeTe2 up to room temperature. Commun Phys 5:254. https://doi.org/10.1038/s42005-022-01031-w

    Article  CAS  Google Scholar 

  26. Park TE, Peng L, Liang J, Hallal A, Yasin FS, Zhang X, Song KM, Kim SJ, Kim K, Weigand M, Schütz G, Finizio S, Raabe J, Garcia K, Xia J, Zhou Y, Ezawa M, Liu X, Chang J, Koo HC, Kim YD, Chshiev M, Fert A, Yang H, Yu X, Woo S (2021) Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructure. Phys Rev B 103:104410. https://doi.org/10.1103/PhysRevB.103.104410

    Article  CAS  Google Scholar 

  27. Li Q, Yang M, Gong C, Chopdekar RV, N’Diaye AT, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid AK, Wang S, Liu K, Gao N, Admasu AS, Cheong SW, Hwang C, Li J, Wang F, Zhang X, Qiu Z (2018) Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett 18:5974–5980. https://doi.org/10.1021/acs.nanolett.8b02806

    Article  CAS  PubMed  Google Scholar 

  28. Kim G, Yun J, Lee Y, Kim J (2022) Construction of a vector-field cryogenic magnetic force microscope. Rev Sci Instrum 93:063701. https://doi.org/10.1063/5.0092264

    Article  CAS  PubMed  Google Scholar 

  29. Leon-Brito N, Bauer ED, Ronning F, Thompson JD, Movshovich R (2016) Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2. J Appl Phys 120:083903. https://doi.org/10.1063/1.4961592

    Article  CAS  Google Scholar 

  30. Guo T, Ma Z, Luo X, Hou Y, Meng W, Wang J, Zhang J, Feng Q, Lin G, Sun Y, Sheng Z, Lu Q (2021) Multiple domain structure and symmetry types in narrow temperature and magnetic field ranges in layered Cr2Ge2Te6 crystal measured by magnetic force microscope. Mater Charact 173:110913. https://doi.org/10.1016/j.matchar.2021.110913

    Article  CAS  Google Scholar 

  31. Chen Z, Li M, Liu C, Ma Z, Han Y, Gao J, Wei W, Sheng Z, Du H (2021) Magnetic domain structure in ferromagnetic kagome metal DyMn6Sn6. Frontiers in Physics 9:685510. https://doi.org/10.3389/fphy.2021.685510

    Article  Google Scholar 

  32. May AF, Calder S, Cantoni C, Cao H, McGuire MA (2016) Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys Rev B 93:014411. https://doi.org/10.1103/PhysRevB.93.014411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, and ICT and Future Planning (NRF-2019R1A2C2090356, NRF-2021R1A6A1A10042944, and NRF-2022H1D3A3A01077468); the Commercialization Promotion Agency for R&D Outcomes (COMPA) (RS2023-00243196); the Technology Development Program (Grant No. S3198743) funded by the Ministry of SMEs and Startups (MSS, Korea). JK and NH were supported by the Brain-Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00222408). JSK was supported by the Basic Science Research Program (NRF2022R1A2C3009731) funded by the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea. NH is member of the Instituto de Nanociencia y Nanotecnologia (INN), CNEA-CONICET (Argentina). GK is currently at Samsung Advanced Institute of Technology, Suwon, Korea.

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceived the original idea and supervised the project. J.Y., Y.L. and G.K. performed MFM measurements. J.S., B.K. and J.S.K. made the Fe4GeTe2 crystal and performed magnetization measurements. J.Y., Y.L, J.C, N.H. and J.K. analyzed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jeehoon Kim.

Ethics declarations

Competing interest

The author declares that he has no known competing financial interests or personal relationships that could have influenced the work reported in this paper.The article is original. The article has been written by the stated authors who are all aware of its content and approve its submission. The article has not been published previously. The article is not under consideration for publication elsewhere. No conflict of interest exists, or if such conflict exists, the exact nature must be declared. If accepted, the article will not be published elsewhere in the same form, in any language, without the written concent of the publisher.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Lee, Y., Kim, G. et al. Probing local magnetic states in the van der Waals ferromagnet Fe4GeTe2 by a vector-field magnetic force microscope. J Mater Sci 59, 6415–6424 (2024). https://doi.org/10.1007/s10853-024-09583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09583-8

Navigation