Skip to main content
Log in

An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

We present a simple and inexpensive lab-built Raman spectroscopy setup. In the setup a low-cost laser diode is used as an excitation source, the dichroic mirror used in usual Raman spectroscopy is replaced by a silver coated mirror with a hole in its center. In place of expensive notch filter, a long pass filter is used in the setup. This lab-built setup shows good performance towards Raman spectroscopy, polarized Raman spectroscopy, and Surface Enhanced Raman Scattering (SERS). Three demonstrations: (i) identification of Raman signature of individual molecules Acetaminophen and Mefenamic acid in their mixture, (ii) polarized Raman spectroscopy of liquid cyclohexane, and (iii) SERS spectroscopy of Rhodamine B dye with Au spherical nanoparticle, small Au nanorod, and large Au nanorod are presented using this inexpensive lab-built Raman spectroscopy setup. The cost-effectiveness and performance of the simple lab-built setup makes it suitable for the research and undergraduate laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Sharma, B., Frontiera, R.R., Henry, A.-I., Ringe, E., and van Duyne, R.P., Mater. Today, 2012, vol. 15, p. 16. https://doi.org/10.1016/S1369-7021(12)70017-2

    Article  Google Scholar 

  2. Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., and Popp, J., Anal. Bioanal. Chem., 2012, vol. 403, p. 27. https://doi.org/10.1007/s00216-011-5631-x

    Article  Google Scholar 

  3. McNay, G., Eustace, D., Smith, W.E., Faulds, K., and Graham, D., Appl. Spectrosc., 2011, vol. 65, p. 825. https://doi.org/10.1366/11-06365

    Article  ADS  Google Scholar 

  4. Pilot, R., Signorini, R., Durante, C., Orian, L., Bhamidipati, M., and Fabris, L., Biosensors, 2019, vol. 9, p. 57. https://doi.org/10.3390/bios9020057

    Article  Google Scholar 

  5. Muehlethaler, C., Leona, M., and Lombardi, J.R., Anal. Chem., 2016, vol. 88, p. 152. https://doi.org/10.1021/acs.analchem.5b04131

    Article  Google Scholar 

  6. Pang, S., Yang, T., and He, L., TrAC, Trends Anal. Chem., 2016, vol. 85, p. 73. https://doi.org/10.1016/j.trac.2016.06.017

    Article  Google Scholar 

  7. Mosier-Boss, P.A., Nanomaterial, 2017, vol. 7, p. 142. https://doi.org/10.3390/nano7060142

    Article  Google Scholar 

  8. de Graff, B.A., Hennip, M., Jones, J.M., Salter, C., and Schaertel, S.A., Chem. Educ., 2002, vol. 7, p. 15. https://doi.org/10.1007/s00897020531a

    Article  Google Scholar 

  9. Young, M.A., Stuart, D.A., Lyandres, O., Glucksberg, M.R., and van Duyne, R.P., Can. J. Chem., 2004, vol. 82, p. 1435. https://doi.org/10.1139/v04-098

    Article  Google Scholar 

  10. Mohr, C., Spencer, C.L., and Hippler, M., J. Chem. Educ., 2010, vol. 87, p. 326. https://doi.org/10.1021/ed800081t

    Article  Google Scholar 

  11. Somerville, W., Le Ru, E., Northcote, P., and Etchegoin, P., Am. J. Phys., 2010, vol. 78, p. 671. https://doi.org/10.1119/1.3427413

    Article  ADS  Google Scholar 

  12. Greer, J.S., Petrov, G.I., and Yakovlev, V.V., J. Raman Spectrosc., 2013, vol. 44, p. 1058. https://doi.org/10.1002/jrs.4327

    Article  ADS  Google Scholar 

  13. Malka, I., Petrushansky, A., Rosenwaks, S., and Bar, I., Appl. Phys. B: Lasers Opt., 2013, vol. 113, p. 511. https://doi.org/10.1007/s00340-013-5500-8

    Article  ADS  Google Scholar 

  14. Montoya-Rossi, E., Arbildo-López, A., and Baltuano-Elías, Ó., J. Lab. Chem. Educ., 2015, vol. 3, p. 67. https://doi.org/10.5923/j.jlce.20150304.02

    Article  Google Scholar 

  15. Feng, L., Xuan, Z., Ma, J., Chen, J., Cui, D., Su, C., Guo, J., and Zhang, Y., J. Exp. Nanosci., 2015, vol. 10, p. 258. https://doi.org/10.1080/17458080.2013.824619

    Article  Google Scholar 

  16. Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., and Plech, A., J. Phys. Chem. B, 2006, vol. 110, p. 15700. https://doi.org/10.1021/jp061667w

    Article  Google Scholar 

  17. Hegde, H.R., Chidangil, S., and Sinha, R.K., Sens. Actuators, A, 2020, vol. 305, p. 111948. https://doi.org/10.1016/j.sna.2020.111948

    Article  Google Scholar 

  18. Hegde, H., Santhosh, C., and Sinha, R.K., Mater. Res. Express, 2019, vol. 6, p. 105075. https://doi.org/10.1088/2053-1591/ab3d8c

    Article  ADS  Google Scholar 

  19. Sinha, R.K., Laser Phys., 2019, vol. 30, p. 026202. https://doi.org/10.1088/1555-6611/ab5945

    Article  ADS  Google Scholar 

  20. Schindelin, J., Rueden, C.T., Hiner, M.C., and Eliceiri, K.W., Mol. Reprod. Dev., 2015, vol. 82, p. 518. https://doi.org/10.1002/mrd.22489

    Article  Google Scholar 

  21. Stalder, A.F., Kulik, G., Sage, D., Barbieri, L., and Hoffmann, P., Colloids Surf., A, 2006, vol. 286, p. 92. https://doi.org/10.1016/j.colsurfa.2006.03.008

    Article  Google Scholar 

  22. Babaei, A., Afrasiabi, M., and Babazadeh, M., Electroanalysis, 20107, vol. 22, p. 1743. https://doi.org/10.1002/elan.200900578

  23. Amado, A.M., Azevedo, C., and Ribeiro-Claro, P.J., Spectrochim. Acta, Part A, 2017, vol. 183, p. 431. https://doi.org/10.1016/j.saa.2017.04.076

    Article  ADS  Google Scholar 

  24. Cunha, V.R., Izumi, C.M., Petersen, P.A., Magalhães, A.R., Temperini, M.L., Petrilli, H.M., and Constantino, V.R., J. Phys. Chem. B, 2014, vol. 118, p. 4333. https://doi.org/10.1021/jp500988k

    Article  Google Scholar 

  25. Jabeen, S., Dines, T.J., Leharne, S.A., and Chowdhry, B.Z., Spectrochim. Acta A, 2012, vol. 96, p. 972, https://doi.org/10.1016/j.saa.2012.07.129

    Article  ADS  Google Scholar 

  26. Charanya, C., Sampathkrishnan, S., and Balamurugan, N., Polycyclic Aromat. Compd., 2019. https://doi.org/10.1080/10406638.2019.1700138

  27. Pelletier, M., Appl. Spectrosc., 1999, vol. 53, p. 1087.

    Article  ADS  Google Scholar 

  28. Wiberg, K.B. and Shrake, A., Spectrochim. Acta, Part A, 1973, vol. 29, p. 583. https://doi.org/10.1016/0584-8539(73)80039-X

    Article  ADS  Google Scholar 

  29. Willets, K.A. and van Duyne, R.P., Annu. Rev. Phys. Chem., 2007, vol. 58, p. 267. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  ADS  Google Scholar 

  30. Link, S. and El-Sayed, M., J. Phys. Chem. B, 2005, vol. 109, p. 10531. https://doi.org/10.1021/jp058091f

    Article  Google Scholar 

  31. Link, S., Mohamed, M., and El-Sayed, M., J. Phys. Chem. B, 1999, vol. 103, p. 3073. https://doi.org/10.1021/jp990183f

    Article  Google Scholar 

  32. Lin, S., Lin, X., Lou, X.-T., Yang, F., Lin, D.-Y., and Lu, Z.-W., Anal. Methods, 2015, vol. 7, p. 5289. https://doi.org/10.1039/C5AY00028A

    Article  Google Scholar 

  33. Zhang, J., Li, X., Sun, X., and Li, Y., J. Phys. Chem. B, 2005, vol. 109, p. 12544. https://doi.org/10.1021/jp050471d

    Article  Google Scholar 

  34. Le Ru, E., Blackie, E., Meyer, M., and Etchegoin, P.G., J. Phys. Chem. C, 2007, vol. 111, p. 13794. https://doi.org/10.1021/jp0687908

    Article  Google Scholar 

  35. Yang, Y., Matsubara, S., Xiong, L., Hayakawa, T., and Nogami, M., J. Phys. Chem. C, 2007, vol. 111, p. 9095. https://doi.org/10.1021/jp068859b

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from Department of Science and Technology (DST), India under the project Grant no. IDP/BDTD/11/2019 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Sinha.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R.K. An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy. Instrum Exp Tech 64, 840–847 (2021). https://doi.org/10.1134/S002044122106018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122106018X

Navigation