Skip to main content
Log in

Development of the Readout and Data-Acquisition System for the RICH Detector of the CBM Experiment

  • Application of Computers in Experiments
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A 64-channel readout and data-acquisition module is described in detail. It consists of an H12700 multianode photomultiplier tube, four PADIWA preamplifier boards, and a TRB v3 card that perform the functions of a time-to-digital converter and a data concentrator. The software modules that are necessary for operation of the prototype are described. The inter-channel delays are calibrated. The drift of individual delays does not exceed 0.5 ns for the entire measurement time. The spectra of the “time over threshold” (ToT) are investigated. The influence of periodic noise pickups and the need to improve circuit designs are revealed. The timing properties of the wavelength shifter and its effect on the detection efficiency for Cherenkov rings are investigated. The most intense component is characterized by a decay time of 1.1 ns and there are components with characteristic times of 3.8 and 45 ns. The influence of single-electron spectrum features on the detection efficiency for photoelectrons and the probability of false hits are determined. The total time resolution of 131 channels is 1.1 ns (FWHM). The results make it possible to use the investigated system of readout and data acquisition in the CBM experiment. Nevertheless, the elimination of the revealed shortcomings will provide the efficiency margin and improve the reliability of the system during long-term operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutbrod, H.H., FAIR Baseline Technical Report, ISBN: 3-9811298-0-6, 2006.

    Google Scholar 

  2. The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments, Friman B. et al., Eds., Berlin, Springer-Verlag, 2011, in Ser.: Lecture Notes in Physics, vol. 814. doi 10.1007/978-3-642-13293-3

  3. The CBM Collaboration, Nuclear Matter Physics at SIS-100, CBM Report 2012-01, Senger, P. and Friese, V., Eds., Darmstadt: GSI, 2012.

    Google Scholar 

  4. Compressed Baryonic Matter Experiment. Technical Status Report, Darmstadt: GSI, 2005.

  5. CBM Progress Report 2016, Selyuzhenkov, I. and Toia, A., Eds., Darmstadt: GSI, 2017, GSI-2017-00564.

    Google Scholar 

  6. Technical Design Report for the CBM Superconducting Dipole Magnet, Malakhov, A. and Shabunov, A., Eds., Darmstadt: GSI, 2013, GSI-2015-02000.

    Google Scholar 

  7. Koziel, M., Amar-Youcef, S., Bialas, N., Deveaux, M., Fröhlich, I., Li, Q., Michel, J., Milanović, B., Müntz, C., Neumann, B., Schrader, C., Stroth, J., Tischler, T., Weirich, R., and Wiebusch, M., Nucl. Instrum. Methods Phys. Res., Sect. A, 2013, vol. 732, p. 515. doi 10.1016/j.nima.2013.07.041

    Google Scholar 

  8. Technical Design Report for the CBM Silicon Tracking System (STS), Heuser, J., et al., Eds., Darmstadt: GSI, 2013, GSI-2013-05499.

    Google Scholar 

  9. Technical Design Report for the CBM Ring Imaging Cherenkov Detector (RICH), Höhne, C., Ed., Darmstadt: GSI, 2013, GSI-2014-00528.

    Google Scholar 

  10. Technical Design Report for the CBM: Muon Chambers (MuCh), Chattopadhyay, S., et al., Eds., Darmstadt: GSI, 2015, GSI-2015-02580.

    Google Scholar 

  11. Biswas, S., Schmidt, D.J., Abuhoza, A., Frankenfeld, U., Garabatos, C., Hehner, J., Kleipa, V., Morhardt, T., Schmidt, C.J., Schmidt, H.R., and Wiehula, J., J. Instrum, 2013, vol. 8, p. C12002. doi 10.1088/1748-0221/8/12/C12002

    Article  Google Scholar 

  12. Petris, M., Petrovici, M., Catanescu, V., Tarzila, M., Simion, V., Bartos, D., Berceanu, I., Bercuci, A., Caragheorgheopol, G., Constantin, F., Radulescu, L., Adamczewski-Musch, J., and Linev, S., Nucl. Instrum. Methods Phys. Res., Sect. A, 2013. vol. 732. p. 375. doi 10.1016/j.nima.2013.07.087

    Article  ADS  Google Scholar 

  13. Technical Design Report for the CBM Time-of-Flight System (TOF), Herrmann, N., Ed., Darmstadt: GSI, 2014, GSI-2015-01999.

    Google Scholar 

  14. Korolko, I.E., Prokudin, M.S., and Zaitsev, Yu. M., J. Phys.: Conf. Ser., 2017, vol. 798, p. 012164. doi 10.1088/1742-6596/798/1/012164

    Google Scholar 

  15. Technical Design Report for the CBM Projectile Spectator Detector (PSD), Guber, F. and Selyuzhenkov, I., Eds., Darmstadt: GSI, 2015, GSI-2015-02020.

    Google Scholar 

  16. Hamamatsu H12700 Manual. https://doi.org/www.hamamatsu.com/resources/pdf/etd/H12700_TPMH1348E.pdf.

  17. Calvi, M., Carniti, P., Cassina, L., Gotti, C., Maino, M., Matteuzzi, C., and Pessina, G., J. Instrum., 2015, vol. 10, p. 09021. doi 10.1088/1748-0221/10/09/P09021

    Article  Google Scholar 

  18. https://doi.org/www.hamamatsu.com/resources/pdf/etd/H8500_H10966_TPMH1327E.pdf.

  19. Adamczewski-Musch, J., Akishin, P., Becker, K.-H., Belogurov, S., Bendarouach, J., Boldyreva, N., Chernogorov, A., Deveaux, C., Dobyrn, V., Dürr, M., Eschke, J., Förtsch, J., Heep, J., Höhne, C., Kampert, K.-H., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 845, p. 434. doi 10.1016/j.nima.2016.05.102

    Google Scholar 

  20. Adamczewski-Musch, J., Akishin, P., Becker, K.-H., Belogurov, S., Bendarouach, J., Boldyreva, N., Chernogorov, A., Deveaux, C., Dobyrn, V., Dürr, M., Eschke, J., Förtsch, J., Heep, J., Höhne, C., Kampert, K.-H., et al., J. Instrum., 2016, vol. 11, C05016. doi 10.1088/1748-0221/11/05/C05016

    Article  Google Scholar 

  21. Photomultiplier Tubes. Basics and Applications, Hamamatsu Photonics K.K.

  22. Kopfer, J., PhD Thesis, Wuppertal, Bergische Univ. Wuppertal, 2014.

    Google Scholar 

  23. Official TRB Project Web Site. https://doi.org/trb.gsi.de/.

  24. Ugur, C., Linev, S., Michel, J., Schweitzer, T., and Traxler, M., J. Instrum., 2016, vol. 11, C01046. doi 10.1088/1748-0221/11/01/C01046

    Article  Google Scholar 

  25. TRB v3 Documentation. https://doi.org/jspc29.x-matter.unifrankfurt.de/docu/trb3docu.pdf.

  26. Zabołotny, W.M. and Kasprowicz, G., Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 2014, vol. 929023. doi 10.1117/12.2073377

  27. de Cuveland, J. and Lindenstruth, V. (for the CBM Collaboration), J. Phys.: Conf. Ser., 2011, vol. 331, p. 022006. doi 10.1088/1742-6596/331/2/022006

    Google Scholar 

  28. Michel, J., Faul, M., Friese, J., Höhne, C., Kampert, K.-H., Patel, V., Pauly, C., Pfeifer, D., Skott, P., Traxler, M., and Ugur, C., J. Instrum., 2017, vol. 12, C01072. doi 10.1088/1748-0221/12/01/C01072

    Article  Google Scholar 

  29. Adamczewski-Musch, J., Kurz, N., Linev, S., and Zumbruch, P., J. Phys.: Conf. Ser, 2012, vol. 396, p. 012001. doi 10.1088/1742-6596/396/1/012001

    Google Scholar 

  30. Bergmann, C., Emschermann, D., Amend, W., Bercuci, A., Berendes, R., Blume, C., Dillenseger, P., Garcia, C., Gläßel, S., Heine, N., Hutter, D., Kardan, B., Kohn, M., Krieger, M., Morhardt, T., et al., in CBM Progress Report 2014, Darmstadt: GSI, 2014, p. 9.

    Google Scholar 

  31. Bergmann, C., Emschermann, D., Berendes, R., Heine, N., Kohn, M., Verhoeven, W., and Wessels, J.P., in CBM Progress Report 2014, Darmstadt: GSI, 2014, p. 78.

    Google Scholar 

  32. Petris, M., Batros, D., Caragheorghropol, G., Constantin, F., Petrovici, M., Radulescu, L., Simion, V., Deppner, I., Herrmann, N., Simon, C., Fruehauf, J., Kis, M., and Loizeau, P-A., J. Phys.: Conf. Ser, 2016, vol. 724, p. 012037. doi 10.1088/1742-6596/724/1/012037

    Google Scholar 

  33. Information About the T9 Beam Line and Experimental Facilities. https://doi.org/home.web.cern.ch/sites/home.web.cern.ch/files/file/spotlight_students/information_about_the_t9_beam_line_and_experimental_facilities.pdf.

  34. Kotchenda, L.M. and Kravtsov, P.A., CBM RICH Prototype Gas System, https://doi.org/hepd.pnpi.spb.ru/hepd/articles/6.pdf.

  35. Adamczewski-Musch, J., Becker, K.-H., Belogurov, S., Boldyreva, N., Chernogorov, A., Deveaux, C., Dobyrn, V., Dürr, M., Eom, J., Eschke, J., Höhne, C., Kampert, K.-H., Kleipa, V., Kochenda, L., Kolb, B., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2014, vol. 766, p. 221. doi 10.1016/j.nima.2014.04.074

    Google Scholar 

  36. Bendarouach, J., Höhne, C., and Mahmoud, T., in CBM Progress Report 2014, Darmstadt: GSI, 2014, p. 56.

    Google Scholar 

  37. Roithner UVTOP240 Datasheet. https://doi.org/www.roithnerlaser.com/datasheets/led_deepuv/uvtop240.pdf.

  38. Adamczewski-Musch, J., Becker, K.-H., Belogurov, S., Boldyreva, N., Chernogorov, A., Deveaux, C., Dobyrn, V., Dürr, M., Eom, J., Eschke, J., Höhne, C., Kampert, K.-H., Kleipa, V., Kochenda, L., Kolb, B., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 783, p. 43. doi 10.1016/j.nima.2015.02.014

    Google Scholar 

  39. Alphalas Picopower-LD Series Datasheet. https://doi.org/www.alphalas.com/images/stories/products/lasers/Picosecond_Pulse_Diode_Lasers_with_Driver_PICOPOWERLD_ALPHALAS.pdf

  40. https://doi.org/www.rz.uni-frankfurt.de/39888789/syscore.

  41. https://doi.org/cbmroot.gsi.de/.

  42. FLESnet Development Repository. https://doi.org/github.com/cbm-fles/flesnet.

  43. Adamczewski-Musch, J., Linev, S., Ovcharenko, E., and Ugur, C., HADES trbnet Data Formats for DABC and Go4: GSI Scientific Report 2012, Darmstadt: GSI, 2013, PHN-SIS18-ACC-41, p. 297.

    Google Scholar 

  44. Szplet, R., Kalisz, J., and Pelka, R., IEEE Trans. Instrum. Meas., 1997, vol. 46, p. 449.

    Article  Google Scholar 

  45. Adamczewski-Musch, J., Akishin, P., Becker, K.-H., Belogurov, S., Bendarouach, J., Boldyreva, N., Deveaux, C., Dobyrn, V., Dürr, M., Eschke, J., Förtsch, J., Heep, J., Höhne, C., Kampert, K.-H., Khanzadeev, A., et al., Phys. Part. Nucl. Lett., 2017, vol. 14, no. 6, p. 904. doi 10.1134/S1547477117060036

    Article  Google Scholar 

  46. Adamczewski-Musch J., Akishin P., Becker K.-H., Belogurov S., Bendarouach J., Boldyreva N., Deveaux C., Dobyrn V., Dürr M., Eschke J., Förtsch J., Heep J., Höhne C., Kampert K.-H., Khanzadeev A., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 846, p. 246. doi 10.1016/j.nima.2017.03.043

    Google Scholar 

  47. Lebedev, S.A. and Ososkov, G.A., Phys. Part. Nucl. Lett., 2009, vol. 6, no. 2, p. 161.

    Article  Google Scholar 

  48. Lebedev, S., Höhne, C., Kisel, I., and Ososkov, G., Fast Parallel Ring Recognition Algorithm in the RICH Detector of the CBM Experiment at FAIR, Dubna: Ob’edin. Inst. Yad. Issled., 2011, PoS(ACAT2010)060.

    Book  Google Scholar 

  49. O’Connor, D.V., Time-correlated Single Photon Counting, London: Academic, 1984.

    Google Scholar 

  50. Gonnella, F., Kozhuharov, V., and Raggi, M., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 791, p. 16. doi 10.1016/j.nima.2015.04.028

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ovcharenko.

Additional information

Original Russian Text © J. Adamczewski-Musch, P.G. Akishin, K.-H. Becker, S.G. Belogurov, J. Bendarouach, N.I. Boldyreva, C. Deveaux, V.V. Dobyrn, M. Dürr, J. Eschke, J. Förtsch, J. Heep, C. Höhne, K.-H. Kampert, A.V. Khanzadeev, L.M. Kochenda, J. Kopfer, P.A. Kravtsov, I. Kres, S.A. Lebedev, E.I. Lebedeva, E.N. Leonova, S.V. Linev, T. Mahmoud, W. Niebur, E.V. Ovcharenko, V. Patel, C. Pauly, M. Penschuck, D. Pfeifer, S. Querchfeld, J. Rautenberg, S. Reinecke, Yu.G. Riabov, E.V. Roshchin, V.M. Samsonov, V.N. Schetinin, O.P. Tarasenkova, M. Traxler, C. Ugur, M.E. Vznuzdaev, 2018, published in Pribory i Tekhnika Eksperimenta, 2018, No. 3, pp. 15–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamczewski-Musch, J., Akishin, P.G., Becker, KH. et al. Development of the Readout and Data-Acquisition System for the RICH Detector of the CBM Experiment. Instrum Exp Tech 61, 332–348 (2018). https://doi.org/10.1134/S0020441218030028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441218030028

Navigation