Skip to main content
Log in

Application of a specific integrated circuit for readout and analog processing of signals from silicon multiplier arrays

  • Application of Computers in Experiments
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A multichannel integrated circuit intended for readout and analog preprocessing of signals from multielement photodetectors has been designed and evaluated. It is optimized for use with silicon photomultiplier arrays. The chip includes current-signal and voltage-signal processing channels. Except for the front end, all of the channels are identical. Each of them contains a code-controlled current amplifier, an integrator, two digitally controlled variable gain amplifiers, a filter, a peak detector, an output buffer with a level shifter, an amplitude discriminator, two timers, and a control unit. The device is configured and tuned by uploading data via a serial interface. The chip is part of a chipset that also includes a multichannel analog-todigital converter with a buffer memory and voltage reference. This chipset makes it possible to build a fullfeatured multielement photodetector signal-processing system, as well as signal processing systems for multichannel detectors of other types. The integrated circuit is implemented in the 0.35 μm CMOS process. This paper also describes the features of the circuits of the device, analyzes the parameters of several of its basic units, and discusses the test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silicon Photomultipliers for Low Level Light Applications. KETEK Newsletter. KETEK GmbH. 2014. http:// www.ketek.net/downloads/newsletter/?eID=dam_-frontend_push&docID=2271

  2. Klemin, S., Kuznetsov, Yu., Filatov, L., Buzhan, P., Dolgoshein, B., Il’in, A., and Popova, E., Elektronika: Nauka, Tekhnol., Biznes, 2007, no. 8, p. 80.

    Google Scholar 

  3. Readout Methods for Arrays of Silicon Photomultipliers Appl. Note–SensL, 2014. http://sensl.com/downloads/ds/TN-Readout_Methods_for_Arrays_of_SiPM.pdf

  4. Olcott, P.D., Glover, G., and Levin, C.S., IEEE Trans. Nucl. Sci., 2013, vol. 60, no. 5, p. 3198. doi 10.1109/ TNS.2013.2271916

    Article  ADS  Google Scholar 

  5. Goertzen, A.L., Zhang, X., McClarty, M.M., Berg, E.J., Liu, C.Y., Kozlowski, P., Retiere, F., Ryner, L., Sossi, V., Stortz, G., and Thompson, C.J., IEEE Trans. Nucl. Sci., 2013, vol. 60, no. 3, p. 1541. doi 10.1109/TNS. 2013.2251661

    Article  ADS  Google Scholar 

  6. Pullia, A., Muller, W.F.J., Boiano, C., and Bassini, R., IEEE Trans. Nucl. Sci., 2002, vol. 49, no. 6, p. 3269. doi 10.1109/TNS.2002.805521

    Article  ADS  Google Scholar 

  7. Dey, S., Myers, E., Lewellen, T.K., Miyaoka, R.S., and Rudell, J.C., Proc. IEEE Nucl. Sci. Symp. and Medical Imaging Conf., (2013 NSS/MIC), Seoul, 2013. doi 10.1109/NSSMIC.2013.682906210.1109/NSSMIC.2013. 6829062

    Google Scholar 

  8. Ahmed, G., Buhler, P., Hartmann, O., Marton, J., Suzuki, K., and Zmeskal, J., Hyperfine Interact., 2012, vol. 211, nos. 1–3, p. 49. doi 10.1007/s10751-011-0556-5

    Article  ADS  Google Scholar 

  9. Andreotti, M., Baldini, W., Benettoni, M., Calabrese, R., Carassiti, V., Cibinetto, G., Dal Corso, F., Evangelisti, F., Fanin, C., Feltresi, E., Gagliardi, N., Luppi, E., Malaguti, R., Manzali, M., Melchiorri, M., et al., Proc. IEEE Nucl. Sci. Symp. Conf. Record (NSS/MIC), 2010, doi 10.1109/NSSMIC.2010.587406810

    Google Scholar 

  10. Dinu, N., Imando, T., Nagai, A., Pinot, L., Puill, V., Callier, S., Janvier, B., Esnault, C., Charon, Y., Raux, L., Vandenbussch, V., Verdier, M.-A., and Menard, L., Nucl. Instrum. Methods Phys. Res. A., 2015, vol. 787, p. 367. doi 10.1016/j.nima.2015.01.083

    Article  ADS  Google Scholar 

  11. Roncali, E. and Cherry, S.R., Ann. Biomed. Eng., 2011, vol. 39, no. 4, p. 1358. doi 10.1007/s10439-011-0266-9

    Article  Google Scholar 

  12. Raylman, R.R., Stolin, A., Majewski, S., and Proffitt, J., Nucl. Instrum. Methods Phys. Res. A, 2014, vol. 735, p. 602. doi 10.1016/j.nima.2013.10.008

    Article  ADS  Google Scholar 

  13. Park, H.M. and Joo, K.S., Nucl. Instrum. Methods Phys. Res. A, 2015, vol. 781, p. 1. doi 10.1016/j.nima. 2015.01.080

    Article  ADS  Google Scholar 

  14. Cattaneo, P.W., de Gerone, M., Gatti, F., Nishimura, M., Ootani, W., Rossella, M., and Uchiyama, Y., IEEE Trans. Nucl. Sci., 2014, vol. 61, no. 5, p. 2657. doi 10.1109/TNS.2014.2347576

    Article  ADS  Google Scholar 

  15. Gomez, S., Gascon, D., Fernandez, G., Sanuy, A., Mauricio, J., Graciani, R., and Sanchez, D., Proc. SPIE, 2016, vol. 9899, Optical Sensing and Detection IV, p. 98990G. doi 10.1117/12.2231095

  16. Ahmad, S., Fleury, J., de la Taille, C., Seguin-Moreau, N., Dulucq, F., Martin-Chassard, G., Callier, S., Thienpont, D., and Raux, L., IEEE Trans. Nucl. Sci., 2015, vol. 62, no. 3, p. 664. doi 10.1109/TNS.2015. 2397973

    Article  ADS  Google Scholar 

  17. Briggl, R., Dorn, M., Hagdorn, R., Harion, T., Schultz-Coulon, H.C., and Shen, W., JINST, 2014, vol. 9, no. 2, p. C02013. doi 10.1088/1748-0221/9/02/ C02013

    Article  Google Scholar 

  18. Bagliesi, M.G., Avanzini, C., Bigongiari, G., Cecchi, R., Kim, M.Y., Maestro, P., Marrocchesi, P.S., and Morsani, F., Nucl. Phys. B (Proc. Suppl.), 2011, vol. 215, no. 1, p. 344. doi 10.1016/j.nuclphysbps.2011.04.049

    Article  ADS  Google Scholar 

  19. Mozzanica, A., Bergamaschi, A., Dinapoli, R., Gozzo, F., Henrich, B., Kraft, Ph., Patterson, B., and Schmitt, B., Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 607, no. 1, p. 250. doi 10.1016/j.nima.2009.03.166

    Article  ADS  Google Scholar 

  20. Ghelman, M., Paperno, E., Ginsburg, D., Mazor, T., Cohen, Yo., and Osovizky, A., Nucl. Instrum. Methods Phys. Res. A, 2011, vol. 652, no. 1, p. 866. doi 10.1016/j. nima.2010.08.062

    Article  ADS  Google Scholar 

  21. Bocharov, Y.I., Butuzov, V.A., and Simakov, A.B., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 623. doi 10.7868/S0032816215040163

    Article  Google Scholar 

  22. Razavi, B., Design of Analog CMOS Integrated Circuits Boston: McGraw-Hill, 2001, p. 80.

    Google Scholar 

  23. De Geronimo, G., O’Connor, P., and Grosholz, J., IEEE Trans. Nucl. Sci., 2000, vol. 47, no. 3, p. 818. doi 10.1109/23.856523

    Article  ADS  Google Scholar 

  24. Corsi, F., Foresta, M., Marzocca, C., Matarrese, G., and del Guerra, A., JINST, 2009, vol. 4, no. 3, p. P03004. doi 10.1088/1748-0221/4/03/P03004

    Article  ADS  Google Scholar 

  25. Zhak, S.M., Baker, M.W., and Sarpeshkar, R., IEEE J. Solid-State Circuits, 2003, vol. 38, no. 10, p. 1750. doi 10.1109/JSSC.2003.817599

    Article  Google Scholar 

  26. Kruiskamp, M.W. and Leenaerts, D.M.W., IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 1, p. 295. doi 10.1109/23.281513

    Article  ADS  Google Scholar 

  27. NucScout: Portable Gamma Identifier–Quantifier–Dose Rate Meter, Technical Data. 2016. SARAD GmbH. https://www.sarad.de/cms/media/docs/datenblatt/NucScout _Infosheet_TechnicalData_EN_25-11-16.pdf

  28. Samotaev, N., Simakov, A., Onishchenko, E., Gurkovskiy, B., Butusov, V., Bocharov, Yu., Vodokhlebov, I., Zhuravlev, B., and Murtazina, E., Proc. 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Bari, Italy, 2016. doi 10.1109/EESMS.2016.7504812. http://ieeexplore.ieee. org/document/750481210.1109/EESMS.2016. 7504812

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Bocharov.

Additional information

Original Russian Text © Y.I. Bocharov, V.A. Butuzov, A.B. Simakov, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 6, pp. 23–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, Y.I., Butuzov, V.A. & Simakov, A.B. Application of a specific integrated circuit for readout and analog processing of signals from silicon multiplier arrays. Instrum Exp Tech 60, 800–810 (2017). https://doi.org/10.1134/S0020441217060021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217060021

Navigation