Skip to main content
Log in

A multichannel analog-to-digital converter of signals of silicon photomultiplier arrays

  • Application of Computers in Experiment
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An application specific integrated circuit (ASIC), consisting of nine basic channels and one auxiliary channel, each containing a 10-bit successive-approximation analog-to-digital converter (ADC), is designed and tested. The microcircuit also includes a buffer storage unit and a reference-voltage source. The microcircuit is intended for converting signals of silicon photomultiplier arrays. To decrease the differential nonlinearity of the ADC without recourse to autocalibration, a new method, based on introducing additional elements into the layout of ADC capacitor arrays, is proposed. The basic feature of the designed microcircuit, which is oriented at the application in the portable equipment with a self-contained power supply, is the low power consumption, which does not exceed 0.5 mW per channel at a sample frequency of 150 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondarenko, G., Dolgoshein, B., Golovin, V., Ilyin, A., Klanner, R., and Popova, E., Nucl. Phys. B–Proc. Suppl., 1998, vol. 61, pp. 347–352.

    Article  ADS  Google Scholar 

  2. Klemin, S., Kuznetsov, Yu., Filatov, L., Buzhan, P., Dolgoshein, B., Il’in, A., and Popova, E., Elektronika: Nauka, Tekhnol., Biznes, 2007, no. 8, pp. 80–86.

    Google Scholar 

  3. Roncali, E. and Cherry, S.R., Ann. Biomed. Eng., 2011, vol. 39, pp. 1358–1377. DOI: 10.1007/s10439-011-0266-9

    Article  Google Scholar 

  4. Son, K.T. and Lee, C.C., IEEE Trans. Instrum. Measur., 2010, vol. 59, pp. 3005–3011. DOI: 10.1109/TIM.2010.2047127

    Article  Google Scholar 

  5. Raylman, R.R., Stolin, A., Majewski, S., and Proffitt, J., Nucl. Instrum. Methods Phys. Res. A, 2014, vol. 735, pp. 602–609. DOI: 10.1016/j.nima.2013.10.008

    Article  ADS  Google Scholar 

  6. Readout Methods for Arrays of Silicon Photomultipliers. Appl. Note. SensL, 2014. URL: http://sensl.com/downloads/ds/TN-Readout_Methods_for_Arrays_of_SiPM.pdf

  7. Ko, G.B., Yoon, H.S., Kwon, S.I., Lee, C.M., Ito, M., Hong, S.J., Lee, D.S., and Lee, J.S., Nucl. Instrum. Methods Phys. Res. A, 2013, vol. 703, pp. 38–44.

    Article  ADS  Google Scholar 

  8. Powolny, F., Auffray, E., Brunner, S.E., Garutti, E., Goettlich, M., Hillemanns, H., Jarron, P., Lecoq, P., Meyer, T., Schultz-Coulon, H.C., Shen, W., and Williams, M.C.S., IEEE Trans. Nucl. Sci., 2011, vol. 58, pp. 597–604. DOI: 10.1109/TNS.2011.2119493

    Article  ADS  Google Scholar 

  9. Fischer, P., Peric, I., Ritzert, M., and Koniczek, M., IEEE Trans. Nucl. Sci., 2009, vol. 56, pp. 1153–1158. http://dx.doi.org/doi 10.1109/TNS.2008.2008807

    Article  ADS  Google Scholar 

  10. Sacco, I., Fischer, P., and Ritzert, M., J. Instr., 2013, vol. 8, p. C12013. DOI: 10.1088/1748-0221/8/12/C12013

    Article  Google Scholar 

  11. Meier, D., Mikkelsen, S., Talebi, J., Azman, S., Moehlum, G., and Patt, B.E., IEEE Nucl. Sci. Symp. Conf. Rec. (NSS/MIC), Knoxville, 2010, pp. 1653–1657. DOI: 10.1109/NSSMIC.2010.587405610.1109/NSSMIC.2010.5874056

    Google Scholar 

  12. Corsi, F., Foresta, M., Marzocca, C., Matarrese, G., and del Guerra, A., J. Inst., 2009, vol. 4, pp. 1–10. DOI: 10.1088/1748-0221/4/03/P03004

    Article  Google Scholar 

  13. Bagliesi, M.G., Avanzini, C., Bigongiari, G., Cecchi, R., Kim, M.Y., Maestro, P., Marrocchesi, P.S., and Morsani, F., Nucl. Phys., B, 2011, vol. 215, pp. 344–348. DOI: 10.1016/j.nuclphysbps.2011.04.049

    Article  Google Scholar 

  14. Croon, J.A., Sansen, W., and Maes, H.E., Matching Properties of Deep Submicron MOS Transistors, Dordrecht, The Netherlands: Springer-Verlag, 2005, p. 4.

    Google Scholar 

  15. Simakov, A.B., Bocharov, Yu.I., and Butuzov, V.A., Proc. 1st Russ.–Belar. Sci.–Tech. Conf. “Element Base of Native Radioelectronics,” Nizhny Novgorod, 2013, vol. 1, p. 49.

    Google Scholar 

  16. Zhu, Y., Chio, U., Wei, H., Sin, S., and Martins, R.P., Proc. 51st Midwest Symp. Circ. Syst., Knoxville, TN., 2008, pp. 922–925. DOI: 10.1109/MWSCAS.2008.461695110.1109/MWSCAS.2008.4616951

    Google Scholar 

  17. Lei, S., Qinyuan, D., Gaoshuai, Q., and Chuangchuan, L., Proc. 3rd Int. Symp. Intell. Inform. Tech. Appl., Shanghai: IEEE, 2009, vol. 2, pp. 280–283.

    Google Scholar 

  18. Osipov, D.L., Bocharov, Yu.I., and Butuzov, V.A., Russ. Mictoelectr., 2013, vol. 42, no. 4, pp. 253–259.

    Article  Google Scholar 

  19. Zhang, Ch. and Wang, H., IEEE Trans. Instrum. Measur., 2012, vol. 61, pp. 587–594. DOI: 10.1109/TIM.2011.2172120

    Article  Google Scholar 

  20. Filipovic, L. and MacEachern, L, Proc. Int. Conf. on Microelectronics (ICM). Sharjah. IEEE, 2008, p. 399. DOI: 10.1109/ICM.2008.539355110.1109/ICM.2008.5393551

    Google Scholar 

  21. Weiru, G., Fan, Y., and Junyan, R., J. Semicond., 2014, vol. 35, p. 085006. DOI: 10.1088/1674-4926/35/8/085006

    Article  ADS  Google Scholar 

  22. Du, L., Ning, N., Zhang, J., Yu, Q., and Liu, Y., IEEJ Trans. Electr. Electron. Eng., 2013, vol. 8, pp. 408–414. DOI: 10.1002/tee.21872

    Article  Google Scholar 

  23. Fan, H., Han, X., Wei, Q., and Yang, H., Analog Integr. Circ. Sig. Process., 2013, vol. 74, pp. 239–254. DOI: 10.1007/s10470-012-9977-6

    Article  Google Scholar 

  24. Yingying, C. and Dongmei, L., J. Semicond., 2013, vol. 34, p. 045007. doi 10.1088/1674-4926/34/4/045007

    Article  ADS  Google Scholar 

  25. Butuzov, V.A., Bocharov, Yu.I., Osipov, D.L., and Simakov, A.B., Radiopromyshlennost’, 2012, no. 3, pp. 14–23.

    Google Scholar 

  26. Razavi, B., Design of Analog CMOS Integrated Circuits, New York: McGraw Hill, 2001, p. 471.

    Google Scholar 

  27. Lei, K., Mak, P., and Martins, R.P., Analog Integr. Circ. Sig. Process., 2013, vol. 77, pp. 277–284. DOI: 10.1007/s10470-013-0156-1

    Article  Google Scholar 

  28. Figueiredo, P.M. and Vital, J.C., IEEE Trans. Circuits Systems II, 2006, vol. 53, p. 541–545. DOI: 10.1109/TCSII.2006.875308

    Article  Google Scholar 

  29. Guan, X., Wang, X., Wang, A., and Zhao, B., Analog Integr. Circ. Sig. Process., 2010, vol. 62, pp. 113–119. DOI: 10.1007/s10470-009-9333-7

    Article  Google Scholar 

  30. The X-FAB Silicon Foundries. http://www.xfab.com

  31. Osipov, D., Butuzov, V., and Bocharov, Yu., Kompon. Tekhnol., 2011, no. 8, pp. 196–199.

    ADS  Google Scholar 

  32. Osipov, D.L., Bocharov, Yu.I., and Butuzov, V.A., Instrum. Exp. Tech., 2012, no. 5, pp. 107–108.

    Google Scholar 

  33. MyRIAM. Continuous Monitor for Radioactivity in the Ambient Air. Technical Information, SARAD GmbH. URL: http://sarad.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bocharov.

Additional information

Original Russian Text © Yu.I. Bocharov, V.A. Butuzov, A.B. Simakov, 2015, published in Pribory i Tekhnika Eksperimenta, 2015, No. 5, pp. 43–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, Y.I., Butuzov, V.A. & Simakov, A.B. A multichannel analog-to-digital converter of signals of silicon photomultiplier arrays. Instrum Exp Tech 58, 623–630 (2015). https://doi.org/10.1134/S0020441215040168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441215040168

Keywords

Navigation