Skip to main content
Log in

Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper examines processes for the preparation of metallic iridium nanoparticles under hydrothermal conditions. The reduction of aqueous potassium hexachloroiridate(IV) solutions with sodium tetrahydridoborate in acidic and alkaline media at temperatures from 130 to 180°C has been shown to take 2–30 min and result in the formation of fine metallic iridium powder with a characteristic mosaic structure. The average size of the iridium(0) nanoparticles varies from 8 to 300 nm, depending on synthesis conditions, and the crystallite size is no greater than 10 nm. According to low-temperature nitrogen gas adsorption measurements, the specific surface area of the materials prepared in acid solutions ranges from 1 to 10 m2/g, and that of the materials prepared in alkaline solutions reaches 25 m2/g. X-ray photoelectron spectroscopy results demonstrate that the surface of the 8-nm-diameter iridium nanoparticles is covered with an oxide film. As shown by differential scanning calorimetry and thermogravimetry in an argon atmosphere, the fraction of iridium oxide compounds in the material with a specific surface area of 25 m2/g does not exceed 5 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chen, A. and Ostrom, C., Palladium-based nanomaterials: synthesis and electrochemical applications, Chem. Rev., 2015, vol. 115, pp. 11999–12044.https://doi.org/10.1021/acs.chemrev.5b00324

    Article  CAS  PubMed  Google Scholar 

  2. Axet, M.R. and Philippot, K., Catalysis with colloidal ruthenium nanoparticles, Chem. Rev., 2020, vol. 120, pp. 1085–1145.https://doi.org/10.1021/acs.chemrev.9b00434

    Article  CAS  PubMed  Google Scholar 

  3. Xu, H., Shang, H., Wang, C., and Du, Y., Low-dimensional metallic nanomaterials for advanced electrocatalysis, Adv. Funct. Mater., 2020, vol. 30, no. 50, paper 2006317.https://doi.org/10.1002/adfm.202006317

  4. Maduraiveeran, G., Sasidharan, M., and Ganesan, V., Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications, Biosens. Bioelectron., 2018, vols. 103, pp. 113–129.https://doi.org/10.1016/j.bios.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  5. He, L., Weniger, F., Neumann, H., and Beller, M., Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry, Angew. Chem., Int. Ed., 2016, vol. 55, no. 41, pp. 12582–12594.https://doi.org/10.1002/anie.201603198

    Article  CAS  Google Scholar 

  6. Alekseev, E.S., Alentiev, A.Y., Belova, A.S., et al., Supercritical fluids in chemistry, Russ. Chem. Rev., 2020, vol. 89, pp. 1337–1427.https://doi.org/10.1070/RCR4932

    Article  CAS  Google Scholar 

  7. Jovanovič, P., Hodnik, N., Ruiz-Zepeda, F., Arčon, I., Jozinovič, B., Zorko, M., Bele, M., Šala, M., Šelih, V.S., Hočevar, C., and Gaberšček, M., Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study, J. Am. Chem. Soc., 2017, vol. 139, no. 36, pp. 12837–12846.https://doi.org/10.1021/jacs.7b08071

    Article  CAS  PubMed  Google Scholar 

  8. Lv, F., Feng, J., Wang, K., Dou, Z., Zhang, W., Zhou, J., Yang, C., Luo, M., Yang, Y., Li, Y., Gao, P., and Guo, S., Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts, ACS Central Sci., 2018, vol. 4, no. 9, pp. 1244–1252.https://doi.org/10.1021/acscentsci.8b00426

    Article  CAS  Google Scholar 

  9. Over, H., Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting, ACS Catal., 2021, vol. 11, no. 14, pp. 8848–8871.https://doi.org/10.1021/acscatal.1c01973

    Article  CAS  Google Scholar 

  10. Wang, F., Kusada, K., Wu, D., Yamamoto, T., Toriyama, T., Matsumura, S., and Kitagawa, H., Solid-solution alloy nanoparticles of the immiscible iridium-copper system with a wide composition range for enhanced electrocatalytic applications, Angew. Chem., Int. Ed., 2018, vol. 57, pp. 4505–4509.https://doi.org/10.1002/anie.201800650

    Article  CAS  Google Scholar 

  11. Liu, D., Chen, X., Xu, G., Guan, J., Cao, Q., Dong, B., and Mu, X., Iridium nanoparticles supported on hierarchical porous n-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water, Sci. Rep., 2016, vol. 6, paper 21365.https://doi.org/10.1038/srep21365

  12. Hara, M., Badam, R., Wang, G.J., Huang, H-H., and Yoshimura, M., Synthesis and evaluation of iridium oxide nanoparticle catalysts supported on nitrogen-doped reduced graphene oxides, ECS Trans., 2018, vol. 85, no. 11, pp. 27–35.https://doi.org/10.1149/08511.0027ecst

    Article  CAS  Google Scholar 

  13. Rueping, M., Koenigs, R.M., Borrmann, R., Zoller, J., Weirich, T.E., and Mayer, J., Size-selective, stabilizer-free, hydrogenolytic synthesis of iridium nanoparticles supported on carbon nanotubes, Chem. Mater., 2011, vol. 23, no. 8, pp. 2008–2010.https://doi.org/10.1021/cm1032578

    Article  CAS  Google Scholar 

  14. Belousov, O.V., Tarabanko, V.E., Borisov, R.V., Simakova, I.L., Zhyzhaev, A.M., Tarabanko, N., Isakova, V., Parfenov, V., and Ponomarenko, I.V., Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials, React. Kinet. Mech. Catal., 2019, vol. 127, no. 1, pp. 25–39.https://doi.org/10.1007/s11144-018-1430-0

    Article  CAS  Google Scholar 

  15. Rodrigues, T.S., da Silva, A.G., and Camargo, P.H., Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities, J. Mater. Chem. A, 2019, vol. 7, pp. 5857–5874.https://doi.org/10.1039/C9TA00074G

    Article  CAS  Google Scholar 

  16. Zahmakiran, M., Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance, Dalton Trans., 2012, vol. 41, pp. 12690–12696.https://doi.org/10.1039/C2DT31779F

    Article  CAS  PubMed  Google Scholar 

  17. Cui, M., Zhou, J., Zhao, Y., and Song, Q., Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine, Sens. Actuators, B, 2017, vol. 43, pp. 203–210.https://doi.org/10.1016/j.snb.2016.11.145

    Article  CAS  Google Scholar 

  18. Brown, A.L., Winter, H., Goforth, A.M., Sahay, G., and Sun, C., Facile synthesis of ligand-free iridium nanoparticles and their in vitro biocompatibility, Nanoscale Res. Lett., 2018, vol. 13, paper 208.https://doi.org/10.1186/s11671-018-2621-3

  19. Kundu, S. and Liang, H., Shape-selective formation and characterization of catalytically active iridium nanoparticles, J. Colloid Interface Sci., 2011, vol. 354, pp. 597–606.https://doi.org/10.1016/j.jcis.2010.11.032

    Article  CAS  PubMed  Google Scholar 

  20. Hu, H., Xin, J.H., Wang, X., Miaoa, D., and Liua, Y., Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review, J. Mater. Chem. A, 2015, vol. 3, no. 21, pp. 11157–11182.https://doi.org/10.1039/C5TA00753D

    Article  CAS  Google Scholar 

  21. Goel, A. and Rani, N., Effect of PVP, PVA and POLE surfactants on the size of iridium nanoparticles, Open J. Inorg. Chem., 2012, vol. 2, no. 3, pp. 67–73.https://doi.org/10.4236/ojic.2012.23010

    Article  Google Scholar 

  22. Bonet, F., Delmas, V., Grugeon, S., Urbina, R.H., Silvert, P.-Y., and Tekaia-Elhsissen, K., Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol, Nanostruct. Mater., 1999, vol. 11, pp. 1277–1284.https://doi.org/10.1016/S0965-9773(99)00419-5

    Article  CAS  Google Scholar 

  23. Zhang, R., Liu, X., Shi, L., Jin, X., Dong, Y., Li, K., Zhao, X., Li, Q., and Deng, Y., A simple and fast method to synthesize cubic iridium nanoparticles with clean surface free from surfactants, Nanomaterials, 2019, vol. 9, no. 1, paper 76.https://doi.org/10.3390/nano9010076

  24. Reshetnikova, E.A., Lisnevskaya, I.V., and Terekhin, A.I., Hydrothermal synthesis of sodium bismuth titanate ferroelectrics, Inorg. Mater., 2020, vol. 56, no. 1, pp. 83–90.https://doi.org/10.1134/S0020168520010136

    Article  CAS  Google Scholar 

  25. Fesik, E.V., Buslaeva, T.M., Mel’nikova, T.I., Tarasova, L.S., and Laptenkova, A.V., Thermolysis of [Pd(NH3)4]Cl2–(NH4)2Cr2O7 mixtures in an inert atmosphere, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 6, pp. 1011–1016.https://doi.org/10.1134/S0036024419060098

    Article  CAS  Google Scholar 

  26. Zimbovskii, D.S., Churagulov, B.R., and Baranov, A.N., Hydrothermal synthesis of Cu2O films on the surface of metallic copper in a NaOH solution, Inorg. Mater., 2019, vol. 55, no. 6, pp. 582–585.https://doi.org/10.1134/S0020168519060177

    Article  CAS  Google Scholar 

  27. Borisov, R.V., Belousov, O.V., Zhizhaev, A.M., Belousova, N.V., and Kirik, S.D., Carbon-supported palladium–gold bimetallic disperse systems formed in aqueous solutions at 110°C, Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 308–313.https://doi.org/10.1134/S0036023618030038

    Article  Google Scholar 

  28. Asanova, T.I., Asanov, I.P., Maksimovsky, E.A., Vasilchenko, D.B., and Korenev, S.V., Studying the process of (NH4)2[IrCl6] thermal decomposition by X-ray photoelectron spectroscopy and electron microscopy, J. Struct. Chem., 2020, vol. 61, no. 3, pp. 388–399.https://doi.org/10.1134/S0022476620030063

    Article  CAS  Google Scholar 

  29. Plyusnin, P.E., Baidina, I.A., Shubin, Yu.V., and Korenev, S.V., Synthesis, crystal structure, and thermal properties of [Pd(NH3)4][AuCl4]2, Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 371–377.https://doi.org/10.1134/S0036023607030138

    Article  Google Scholar 

  30. Borisov, R.V., Belousov, O.V., Dorokhova, L.I., and Zhizhaev, A.M., Features of fine iridium powders dissolution in acidic media, J. Sib. Fed. Univ. Chem., 2017, vol. 10, no. 3, pp. 325–332.https://doi.org/10.17516/1998-2836-0029

    Article  Google Scholar 

  31. Borisov, R.V., Belousov, O.V., Zhizhaev, A.M., Likhatskii, M.N., and Belousova, N.V., Synthesis of bimetallic nanoparticles Pd-Au and Pt-Au on carbon nanotubes in an autoclave, Russ. Chem. Bull., 2021, vol. 70, no. 8, pp. 1474–1482.https://doi.org/10.1007/s11172-021-3242-z

    Article  CAS  Google Scholar 

  32. Goldberg, R.N. and Hepler, L.G., Thermochemistry and oxidation potentials of the platinum group metals and their compounds, Chem. Rev., 1968, vol. 68, no. 2, pp. 229–252.

    Article  CAS  Google Scholar 

  33. Zakharov, Y.A., Pugachev, V.M., Bogomyakov, A.S., Ovcharenko, V.I., Korchuganova, K.A., Russakov, D.M., and Kolmykov, R.P., Influence of NicoreAushell nanoparticles' morphology on their magnetic properties, J. Phys. Chem. C, 2019, vol. 124, no. 1, pp. 1008–1019.https://doi.org/10.1021/acs.jpcc.9b07897

    Article  CAS  Google Scholar 

  34. Kim, H.W., Shim, S.H., Myung, J.H., and Lee, C., Annealing effects on the structural properties of IrO2 thin films, Vacuum, 2008, vol. 82, no. 12, pp. 1400–1403.https://doi.org/10.1016/j.vacuum.2008.03.004

    Article  CAS  Google Scholar 

  35. Buyanova, N.E. and Karnaukhov, A.P., Adsorbtsiya i poristost’ (Adsorption and Porosity), Dubinin, M.M., Ed., Moscow: Nauka, 1976.

    Google Scholar 

  36. Borisov, R.V., Belousov, O.V., and Irtyugo, L.A., Thermostimulated transformations of highly disperse powders of platinum group metals in an argon atmosphere, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 10, pp. 1732–1738.https://doi.org/10.1134/S0036024414100069

    Article  CAS  Google Scholar 

  37. Fonseca, G.S., Machado, G., Teixeira, S.R., Fecher, G.H., Morais, J., Alves, M.C., and Dupon, J., Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids, J. Colloid Interface Sci., 2006, vol. 301, no. 1, pp. 193–204.https://doi.org/10.1016/j.jcis.2006.04.073

    Article  CAS  PubMed  Google Scholar 

  38. Freakley, S.J., Ruiz-Esquius, J., and Morgan, D.J., The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited, Surf. Interface Anal., 2017, vol. 49, no. 8, pp. 794–799.https://doi.org/10.1002/sia.6225

    Article  CAS  Google Scholar 

  39. Claudel, F., Dubau, L., Berthomé, G., Sola-Hernandez, L., Beauger, C., Piccolo, L., and Maillard, F., Degradation mechanisms of oxygen evolution reaction electrocatalysts: a combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study, ACS Catal., 2019, vol. 9, no. 5, pp. 4688–4698.https://doi.org/10.1021/acscatal.9b00280

    Article  CAS  Google Scholar 

  40. Lozanov, V.V., Il’in, I.Yu., Morozova, N.B., Trubin, S.V., and Baklanova, N.I., Chemical vapor deposition of an iridium phase on hafnium carbide and tantalum carbide, Russ. J. Inorg. Chem., 2020, vol. 65, no. 11, pp. 1781–1788.https://doi.org/10.1134/S0036023620110108

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Krasnoyarsk Regional Shared Research Facilities Center, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, project no. 0287-2021-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Borisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, R.V., Belousov, O.V., Zhizhaev, A.M. et al. Characterization of Metallic Iridium Nanoparticles Synthesized under Hydrothermal Conditions. Inorg Mater 58, 215–222 (2022). https://doi.org/10.1134/S0020168522020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522020030

Keywords:

Navigation