Skip to main content
Log in

Hydrothermal synthesis of Ir and Ir—Pd nanoparticles on carbon nanotubes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A technique for the formation of Ir and Ir—Pd nanoparticles on carbon nanotubes (CNTs) under hydrothermal conditions was proposed. Reduction of potassium hexachloroiridate(IV) from aqueous solutions with sodium tetrahydroborate in alkaline media at a temperature of 180 °C leads to the formation of iridium nanoparticles on the carbon material. Subsequently, the composite material Ir/CNT was modified by palladium deposition through the decomposition of an alkaline solution of tetraamminepalladium(II) chloride in an autoclave. The composition, dimensions, and structure of the obtained functional materials were characterized by scanning electron microscopy with local energy-dispersive X-ray fluorescence analysis, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The metal particles uniformly coat on the CNTs and have diameters of 5–8 and 15–20 nm in the case of iridium and palladium, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Huang, Y. Zhao, EcoMat, 2022, e12176; DOI: https://doi.org/10.1002/eom2.12176.

  2. P. Jovanovič, N. Hodnik, F. Ruiz-Zepeda, I. Arčon, B. Jozinović, M. Zorko, M. Bele, M. Šala, V. S. Šelih, S. Hočevar, M. Gaberšček, J Am. Chem. Soc., 2017, 139, 12837; DOI: https://doi.org/10.1021/jacs.7b08071.

    Article  Google Scholar 

  3. F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang, J. Zhou, C. Yang, M. Luo, Y. Yang, Y. Li, P. Gao, S. Guo, ACS Cent. Sci., 2018, 4, 1244; DOI: https://doi.org/10.1021/acscentsci.8b00426.

    Article  CAS  Google Scholar 

  4. H. Over, ACS Catal., 2021, 11, 8848; DOI: https://doi.org/10.1021/acscatal.1c01973.

    Article  CAS  Google Scholar 

  5. F Wang, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, Y. Nanba, M. Koyama, H. Kitagawa, Ang. Chemie, Int. Ed., 2018, 57, 4505–4509; DOI: https://doi.org/10.1002/anie.201800650.

    Article  CAS  Google Scholar 

  6. D. Liu, X. Chen, G. Xu, J. Guan, Q. Cao, B. Dong, Y. Qi, C. Li, X. Mu, Sci. Rep., 2016, 6, 21365; DOI: https://doi.org/10.1038/srep21365.

    Article  Google Scholar 

  7. L. M. Martínez-Prieto, I. Cano, P. W. van Leeuwen, Top. Organomet. Chem., 2021, 69, 397; DOI: https://doi.org/10.1007/3418_2020_60.

    Google Scholar 

  8. X. Kang, Y. Li, M. Zhu, R. Jin, Chem. Soc. Rev., 2020, 49, 6443; DOI: https://doi.org/10.1039/C9CS00633H.

    Article  Google Scholar 

  9. M. Rueping, R. M. Koenigs, R. Borrmann, J. Zoller, T. E. Weirich, J. Mayer, Chem. Mater., 2011, 23, 2008; DOI: https://doi.org/10.1021/cm1032578.

    Article  CAS  Google Scholar 

  10. X. Xia, L. Figueroa-Cosme, J. Tao, H. C. Peng, G. Niu, Y. Zhu, Y. Xia, J Am. Chem. Soc., 2014, 136, 10878; DOI: https://doi.org/10.1021/ja505716v.

    Article  CAS  Google Scholar 

  11. T. S. Rodrigues, A. G. da Silva, P. H. Camargo, J. Mater. Chem. A, 2019, 7, 5857; DOI: https://doi.org/10.1039/C9TA00074G.

    Article  CAS  Google Scholar 

  12. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.-C. Wang, S Guo., Adv. Mater., 2017, 29, 1703798; DOI:https://doi.org/10.1002/adma.201703798.

    Article  Google Scholar 

  13. K. D. Gilroy, X. Yang, S. Xie, M. Zhao, D. Qin, Y. Xia, Adv. Mater., 2018, 30, 1706312; DOI: https://doi.org/10.1002/adma.201706312.

    Article  Google Scholar 

  14. T. L. Lomocso, E. A. Baranova, Electrochimica Acta, 2011, 56, 8551; DOI: https://doi.org/10.1016/j.electacta.2011.07.041.

    Article  CAS  Google Scholar 

  15. N. A. Bumagin, Russ. Chem. Bull., 2021, 70, 1483; DOI: https://doi.org/10.1007/s11172-021-3243-y.

    Article  CAS  Google Scholar 

  16. F. Sanchez, L. Bocelli, D. Motta, A. Villa, S. Albonetti, N. Dimitratos, Appl. Sci., 2020, 10, 1752; DOI: https://doi.org/10.3390/app10051752.

    Article  CAS  Google Scholar 

  17. N. A. Bumagin, Russ. Chem. Bull., 2021, 70, 2034; DOI: https://doi.org/10.1007/s11172-021-3314-0.

    Article  CAS  Google Scholar 

  18. M. Hara, R. Badam, G. J. Wang, H. H. Huang, M. Yoshimura, ECS Transactions, 2018, 85, 27; DOI: https://doi.org/10.1149/08511.0027ecst.

    Article  CAS  Google Scholar 

  19. H. Bernas, I. Simakova, I. P. Prosvirin, P. Mäki-Arvela, R. Leino, D. Y. Murzin, Catal. Lett., 2012, 142, 690; DOI: https://doi.org/10.1007/s10562-012-0809-1.

    Article  CAS  Google Scholar 

  20. Y. V. Ioni, S. E. Lyubimov, A. A. Korlyukov, M. Y. Antipin, V. A. Davankov, S. P. Gubin, Russ. Chem. Bull., 2012, 61, 1825; DOI: https://doi.org/10.1007/s11172-012-0252-x.

    Article  CAS  Google Scholar 

  21. O. V. Belousov, V. E. Tarabanko, R. V. Borisov, I. L. Simakova, A. M. Zhyzhaev, N. Tarabanko, V. G. Isakova, V. Parfenov, I. V. Ponomarenko, React. Kinet. Mech. Catal., 2019, 127, 25; DOI: https://doi.org/10.1007/s11144-018-1430-0.

    Article  CAS  Google Scholar 

  22. J. V. Rojas, C. H. Castano, J. Nanoparticle Res., 2014, 16, 2567; DOI: https://doi.org/10.1007/s11051-014-2567-z.

    Article  Google Scholar 

  23. E. S. Kobeleva, D. A. Nevostruev, M. N. Uvarov, D. E. Utkin, V. A. Zinoviev, O. A. Gurova, M. S. Kazantzev, K. M. Degtyarenko, A. V. Kulikova, L. V. Kulik, Russ. Chem. Bull., 2021, 70, 2427; DOI: https://doi.org/10.1007/s11172-021-3363-4.

    Article  CAS  Google Scholar 

  24. A. V. Okhokhonin, K. O. Tokmakova, T. S. Svalova, A. I. Matern, A. N. Kozitsina, Russ. Chem. Bull., 2021, 70, 1191; DOI: https://doi.org/10.1007/s11172-021-3204-5.

    Article  CAS  Google Scholar 

  25. S. Kundu, H. Liang, J. Coll. Int. Sci., 2011, 354, 597; DOI: https://doi.org/10.1016/j.jcis.2010.11.032.

    Article  CAS  Google Scholar 

  26. A. Goel, N. Rani, Open J. Inorg. Chem., 2012, 2, 67; DOI: https://doi.org/10.4236/ojic.2012.23010.

    Article  Google Scholar 

  27. R. Zhang, X. Liu, L. Shi, X. Jin, Y. Dong, K. Li, X. Zhao, Q. Li, Y. Deng, Nanomaterials, 2019, 9, 76; DOI: https://doi.org/10.3390/nano9010076.

    Article  Google Scholar 

  28. H. Pu, H. Dai, T. Zhang, K. Dong, Y. Wang, Y Deng, Current Opinion in Electrochemistry, 2022, 22, 100927; DOI: https://doi.org/10.1016/j.coelec.2021.100927.

    Article  Google Scholar 

  29. S. V. Saikova, T. V. Trofimova, A. Yu. Pavlikov, D. V. Karpov, D. I. Chistyakov, Yu. L. Mikhlin, Russ. Chem. Bull., 2020, 69, 1284; DOI:https://doi.org/10.1007/s11172-020-2899-z.

    Article  CAS  Google Scholar 

  30. K. V. Mkrtchyan, A. A. Zezin, E. A. Zezina, S. S. Abramchuk, I. A. Baranova, Russ. Chem. Bull., 2020, 69, 1731; DOI: https://doi.org/10.1007/s11172-020-2956-7.

    Article  CAS  Google Scholar 

  31. X. Xia, S. Xie, M. Liu, H. C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia, PNAS, 2013, 110, 6669; DOI: https://doi.org/10.1073/pnas.1222109110.

    Article  CAS  Google Scholar 

  32. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, Russ. J. Inorg. Chem., 2020, 65, 1623; DOI: https://doi.org/10.1134/S0036023620100034.

    Article  CAS  Google Scholar 

  33. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, M. N. Likhatski, N. V. Belousova, Russ. Chem. Bull., 2021, 70, 1474; DOI: https://doi.org/10.1007/s11172-021-3242-z.

    Article  CAS  Google Scholar 

  34. E. N. Tupikova, I. A. Platonov, D. S. Khabarova, Kinet. Catal., 2019, 60, 366; DOI: https://doi.org/10.1134/S0023158419030145.

    Article  CAS  Google Scholar 

  35. E. V. Fesik, T. M. Buslaeva, T. I. Melnikova, L. S. Tarasova, A. V. Laptenkova, Russ. J. Phys. Chem. A., 2019, 93, 1011; DOI: https://doi.org/10.1134/S0036024419060098.

    Article  CAS  Google Scholar 

  36. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, S. D. Kirik, Y. L. Mikhlin, Inorg. Materials, 2022, 58, 215; DOI: https://doi.org/10.1134/S0020168522020030.

    Article  CAS  Google Scholar 

  37. H. E. Rizk, N. E. El-Hefny, J. Alloys Compd., 2020, 812, 152041; DOI: https://doi.org/10.1016/j.jallcom.2019.152041.

    Article  CAS  Google Scholar 

  38. F. Claudel, L. Dubau, G. Berthomé, L. Solà-Hernández, C. Beauger, L. Piccolo, F. Maillard, ACS Catalysis, 2019, 9, 4688; DOI: https://doi.org/10.1021/acscatal.9b00280.

    Article  CAS  Google Scholar 

  39. W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus, A. Wieckowski, J. Phys. Chem. B, 2006, 110, 13393; DOI: https://doi.org/10.1021/jp061690h.

    Article  CAS  Google Scholar 

  40. A. Felten, J. Ghijsen, J.-J. Pireaux, W. Drube, R. L. Johnson, D. Liang, M. Hecq, G. van Tendeloo, C. Bittencourt, Micron, 2009, 40, 74; DOI: https://doi.org/10.1016/j.micron.2008.01.013.

    Article  CAS  Google Scholar 

  41. J. Islam, S. K. Kim, H. S. Cho, M. J. Kim, W. C. Cho, C. H. Kim, Electrochem. Commun., 2020, 121, 106877; DOI: https://doi.org/10.1016/j.elecom.2020.106877.

    Article  CAS  Google Scholar 

  42. Y. Wen, P. Chen, L. Wang, S. Li, Z. Wang, J. Abed, X. Mao, Y. Min, C. Thang Dinh, P. de Luna, R. Huang, L. Zhang, L. Wang, L. Wang, R. J. Nielsen, H. Li, T. Zhuang, C. Ke, O. Voznyy, Y. Hu, Y. Li, W. A. Goddard III, B. Zhang, H. Peng, E. H. Sargent, J. Am. Chem. Soc., 143, 6482; DOI: https://doi.org/10.1021/jacs.1c00384.

Download references

Funding

This research was carried out in accordance with the state assignment of the Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences (Project No. 0287-2021-0014) using the equipment of the Krasnoyarsk regional center for collective use FRC KSC SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Borisov.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1164–1172, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, R.V., Belousov, O.V., Likhatski, M.N. et al. Hydrothermal synthesis of Ir and Ir—Pd nanoparticles on carbon nanotubes. Russ Chem Bull 71, 1164–1172 (2022). https://doi.org/10.1007/s11172-022-3517-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3517-z

Key words

Navigation