Skip to main content
Log in

Studying the Process of (NH4)2[IrCl6] Thermal Decomposition by X-Ray Photoelectron Spectroscopy and Electron Microscopy

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermal decomposition of ammonium hexachloroiridate(IV) in inert and reducing atmospheres are studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Particular attention is paid to the formation of metallic iridium particles. The processes of thermal decomposition proceed similarly in an inert atmosphere and in a vacuum as is evidenced by equal charge states of Ir, Cl, and N at different decomposition stages in these two cases. According to XPS data, the decomposition process can be described as consisting of three main stages. At the first stage, an intermediate product with atomic charge states corresponding to {Ir(NH3)xCl6−x}(x−3) (1 ≤ x ≤ 3) and metallic iridium are formed. At the second stage, atomic charge states indicate formation of {IrClx}3−x, NH4Cl. The metal nanoparticles appearing at these stages have different shapes: spherical, “flakes”, dendritic networks. The final decomposition product (metallic iridium) is agglomerates of regularly shaped spherical nanoparticles of uniform sizes. The process of thermal decomposition in a reducing atmosphere leads to the formation of nanoporous metal crystallites with a shape similar to that of the initial complex salt. Such crystallites are formed as a result of complicated channels that are developed due to the release of gaseous products (N2 and HCl) and are directed from the bulk of the crystallite to its surface. The atomic charge states of the intermediate decomposition product correspond to {IrClx}3−x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Asanova, I. P. Asanov, M.-G. Kim, E. Yu. Gerasimov, A. V. Zadesenets, P. E. Plyusnin, and S. V. Korenev. J. Nanopart. Res., 2013, 15, 1994.

    Article  Google Scholar 

  2. T. Asanova, I. Asanov, A. Zadesenets, E. Filatov, P. Plyusnin, E. Gerasimov, and S. Korenev. J. Therm. Anal. Calorim., 2016, 123, 1183.

    Article  CAS  Google Scholar 

  3. T. I. Asanova, I. P. Asanov, M. G. Kim, and S. V. Korenev. J. Struct. Chem., 2017, 58(5), 901–910.

    Article  CAS  Google Scholar 

  4. S. V. Korenev, A. B. Venediktov, Y. V. Shubin, S. A. Gromilov, and K. V. Yusenko. J. Struct. Chem., 2003, 44(1), 46.

    Article  CAS  Google Scholar 

  5. K. V. Yusenko, S. Riva, P. A. Carvalho, M. V. Yusenko, S. Arnaboldi, A. S. Sukhikh, M. Hanfland, and S. A. Gromilov. Scripta Materialia, 2017, 138, 22.

    Article  CAS  Google Scholar 

  6. Q. Kong, F. Baudelet, J. Han, S. Chagnot, L. Barthe, J. Headspith, R. Goldsbrough, F. E. Picca, and O. Spalla. Sci. Rep., 2012, 2, 1018.

    Article  Google Scholar 

  7. T. Asanova, I. Asanov, I. Kantor I., S. Korenev, and K. Yusenko. Phys. Chem. Chem. Phys., 2016, 18, 33134.

    Article  CAS  Google Scholar 

  8. S. A. Martynova, P. E. Plyusnin, T. I. Asanova, I. P. Asanov, D. P. Pishchur, S. V. Korenev, S. V. Kosheev, S. Floquet, E. Cadot, and K. V. Yusenko. New J. Chem., 2018, 42, 1762.

    Article  CAS  Google Scholar 

  9. T. I. Asanova, I. P. Asanov, M.-G. Kim, M. Gorgoi, J. Sottmann, S. V. Korenev, and K. V. Yusenko. New J. Chem., 2018, 42, 5071.

    Article  CAS  Google Scholar 

  10. V. I. Bukhtiyarov, V. I. Zaikovskii, A. S. Kashin, and V. P. Ananikov. Russ. Chem. Rev., 2016, 85(11), 1198–1214.

    Article  CAS  Google Scholar 

  11. E. O. Pentsak, A. S. Kashin, M. V. Polynski, K. O. Kvashnina, P. Glatzel, and V. P. Ananikov. Chem. Sci., 2015, 6, 3302.

    Article  CAS  Google Scholar 

  12. S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. N. Banis, R. Li, S. Ye, S. Knights, G. A. Botton, T.-K. Sham, and X. Sun. Sci. Rep., 2013, 3, 1775.

    Article  Google Scholar 

  13. M. P. Seah, M. E. Jones, and M. T. Anthony. Surf. Interface Anal., 1984, 6, 242.

    Article  CAS  Google Scholar 

  14. B. D. Elissa, A. Katrib, R. Ghodsian, B. A. Salsa, and S. H. Addassi. Int. J. Quantum Chem., 1988, 33, 195.

    Article  CAS  Google Scholar 

  15. S. Tanuma, C. J. Powell, and D. R. Penn. Surf. Interface Anal., 2003, 35, 268.

    Article  CAS  Google Scholar 

  16. V. I. Nefedov. Russ. J. Coord. Chem., 1978, 4, 1283.

    CAS  Google Scholar 

  17. V. I. Nefedov and M. A. Porai-Koshits. Mater. Res. Bull., 1972, 7, 1543.

    Article  CAS  Google Scholar 

  18. V. I. Nefedov. Russ. J. Coord. Chem., 1975, 1, 291.

    CAS  Google Scholar 

  19. E. Papirer, R. Lacroix, J.-B. Donnet, G. Nansé, and P. Fioux. Carbon, 1995, 33, 63.

    Article  CAS  Google Scholar 

  20. A. F. Pérez-Cadenas, F. J. Maldonado-Hódar, and C. Moreno-Castilla. Carbon, 2003, 41, 473.

    Article  Google Scholar 

  21. E. W. Ong and J. Eckert. Chem. Mater., 1994, 6, 1946.

    Article  CAS  Google Scholar 

  22. K. Shimizu, A. Shcukarev, and J.-F. Boily. J. Phys. Chem. C, 2011, 115, 6796.

    Article  CAS  Google Scholar 

  23. G. Meyer and A. Möller. J. Less-Common Met., 1991, 170, 327.

    Article  CAS  Google Scholar 

  24. A. Möller and G. Meyer. Z. Anorg. Allg. Chem., 1994, 122, 1185.

    Article  Google Scholar 

  25. Y. Shubin, P. Plyusnin, and M. Sharafutdinov. Nanotechnology, 2012, 23, 405302.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank E. Yu. Filatov for the X-ray diffraction analysis of the initial complex salt.

Funding

The work was partially carried out within the State Assignment of NIIC SB RAS in the field of basic research. The study was supported by the Russian Foundation for Basic Research (project No. 19-02-00308a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Asanova.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Additional Information

The studies were performed using the equipment of the Common Use Center “National Research Center for Catalyst Studies”.

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 3, pp. 412–423.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asanova, T.I., Asanov, I.P., Maksimovsky, E.A. et al. Studying the Process of (NH4)2[IrCl6] Thermal Decomposition by X-Ray Photoelectron Spectroscopy and Electron Microscopy. J Struct Chem 61, 388–399 (2020). https://doi.org/10.1134/S0022476620030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620030063

Keywords

Navigation