Skip to main content
Log in

Heat Capacity of Compounds in the Bi2O3–TiO2 System

  • Published:
Inorganic Materials Aims and scope

Abstract—

The Bi12TiO20, Bi4Ti3O12, and Bi2Ti4O11 bismuth titanates have been prepared by solid-state reactions, via multistep firing of stoichiometric mixtures of their constituent oxides in air at temperatures from 1003 to 1273 K (Bi12TiO20, to 1123 K). The heat capacity of polycrystalline samples of the synthesized compounds has been determined by differential scanning calorimetry in the temperature range 330–1050 K. The Cp(T) curves of Bi4Ti3O12 and Bi2Ti4O11 show peaks at temperatures of 943 and 509 K, respectively, due to ferroelectric phase transitions. The experimental data have been used to evaluate the enthalpy increment, entropy change, and reduced Gibbs energy change of the bismuth titanates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Speranskaya, E.I., Rez, I.S., Kozlova, L.V., et al., Bi2O3–TiO2 system, Izv. Akad. Nauk SSSR,Neorg. Mater., 1965, vol. 1, no. 2, pp. 232–235.

    CAS  Google Scholar 

  2. Kargin, Yu.F., Burkov, V.I., Mar’in, A.A., and Egorysheva, A.V., Kristally Bi12MxO20 ± δso strukturoi sillenita. Sintez, stroenie, svoistva (Sillenite-Structure Bi12MxO20 ± δ Crystals: Synthesis, Structure, and Properties), Moscow: Azbuka, 2004.

  3. Hector, A.L. and Wiggin, S.B., Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore, J. Solid State Chem., 2004, vol. 177, pp. 139–145.https://doi.org/10.1016/S0022-4596(03)00378-5

    Article  CAS  Google Scholar 

  4. Harjuija, J., Väyrynen, S., Putkonen, M., et al., Crystallization of bismuth titanate and bismuth silicate grown as thin films by atomic layer deposition, J. Cryst. Growth, 2006, vol. 286, pp. 376–383.https://doi.org/10.1016/j.jcrysgro.2005.10.020

    Article  CAS  Google Scholar 

  5. Esquivel-Elizondo, R.J., Hinojosa, B.B., and Nino, J.C., Bi2Ti2O7: it is not what you have read, Chem. Mater., 2011, vol. 23, no. 22, pp. 4965–4974.https://doi.org/10.1021/cm202154c

    Article  CAS  Google Scholar 

  6. Kahlenberg, V. and Böhm, H., Investigation of the α–β transition in Bi2Ti4O11, J. Phys.: Condens. Matter, 1994, vol. 6, pp. 6221–6228.

    CAS  Google Scholar 

  7. Lopez-Martinez, J., Romero-Serrano, A., Hernandez-Ramirez, A., et al., Thermal analysis and prediction of phase equilibria in the TiO2–Bi2O3 system, Thermochim. Acta, 2011, vol. 516, pp. 35–39.https://doi.org/10.1016/j.tca.2011.01.008

    Article  CAS  Google Scholar 

  8. Kargin, Yu.F., Ivicheva, S.N., and Volkov, V.V., Phase relations in the Bi2O3–TiO2 system, Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, pp. 619–625.https://doi.org/10.1134/S0036023615050083

    Article  CAS  Google Scholar 

  9. Ivicheva, S.N., Kargin, Yu.F., Kutsev, S.V., and Ashmarin, A.A., Synthesis of different bismuth titanates and ordered Bi–Ti–O nanocomposites based on opal matrices, Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, pp. 1439–1451.https://doi.org/10.1134/S003602361511008X

    Article  CAS  Google Scholar 

  10. Mijazawa, S. and Tabata, T., Bi2O3–TiO2 binary phase diagram study for TSSG pulling of Bi12TiO20 single crystals, J. Cryst. Growth, 1998, vol. 191, pp. 512–516.

    Article  Google Scholar 

  11. Skorikov, V.M., Kargin, Yu.F., Egorysheva, A.V., et al., Growth of sillenite-structure single crystals, Inorg. Mater., 2005, vol. 41, suppl. 1, pp. S24–S46.

    Article  CAS  Google Scholar 

  12. Shulman, H.S., Testorf, M., Damjanovic, D., and Setter, N., Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate, J. Am. Ceram. Soc., 1996, vol. 79, no. 12, pp. 3124–3128.

    Article  CAS  Google Scholar 

  13. Long, C., Chang, Q., and Fan, H., Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics, Sci. Rep., 2017, pp. 1–15. www.nature.com/scientificreports. https://doi.org/10.1038/s41598-017-03266-y

  14. Turner, C.G., Esquivel-Elizondo, J.R., and Nino, J.C., Dielectric properties and relaxation of Bi2Ti2O7, J. Am. Ceram. Soc., 2014, vol. 97, no. 6, pp. 1763–1768.https://doi.org/10.1111/jace.12803

    Article  CAS  Google Scholar 

  15. Krasnov, A.G., Shein, I.R., and Piir, I.V., Experimental investigation and ab initio calculation of the properties of Sc-, In-doped bismuth titanates with the pyrochlore type structure, Phys. Solid State, 2017, vol. 59, no. 3, pp. 495–503.https://doi.org/10.1134/S1063783417030192

    Article  CAS  Google Scholar 

  16. Hua, Z.-Z., Kimura, T., and Yamaguchi, T., Formation of Bi4Ti3O12 from Bi2O3–TiO2 mixtures, J. Ceram. Soc. Jpn., 1983, vol. 91, no. 9, pp. 420–423.

    CAS  Google Scholar 

  17. Tarabanov, G.A., Synthesis of Bi2O3-doped TiO2 ceramics, Inorg. Mater., 1992, vol. 28, no. 8, pp. 1792–1795.

    CAS  Google Scholar 

  18. Brutton, T.M., Study of the liquidus in the system Bi2O3–TiO2, J. Solid State Chem., 1974, vol. 9, no. 2, pp. 173–175.

    Article  Google Scholar 

  19. Miyazawa, S., p-Doping growth of photorefractive Bi12TiO20 crystals, Opt. Mater., 1995, vol. 4, pp. 192–196.

    Article  CAS  Google Scholar 

  20. Efendiev, Sh.M., Raman spectra in Bi12TiO20 single crystals, Phys. Status Solidi, 1984, vol. 123, pp. K105–K108.

    Article  CAS  Google Scholar 

  21. Leonov, E.I., Semenov, A.E., and Shcherbakov, A.G., Joint analysis of vibrational spectra of Bi12SiO20, Bi12GeO20, and Bi12TiO20 crystals, Fiz. Tverdogo Tela (Leningrad), 1986, vol. 28, no. 5, pp. 1590–1593.

    CAS  Google Scholar 

  22. Skorikov, V.M., Zakharov, I.S., Volkov, V.V., and Spirin, E.A., Transmission and absorption spectra of Bi12GeO20, Bi12SiO20, and Bi12TiO20 single crystals, Inorg. Mater., 2002, vol. 38, no. 2, pp. 226–232.

    Google Scholar 

  23. Melot, B.C., Tackett, R., O’Brien, J., et al., Large low-temperature specific heat in pyrochlore Bi12TiO20, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, paper 224111. https://doi.org/098-0121/2009/79(22)/224111(5)

  24. Subramanian, M.A., Aravamudan, G., and Rao, G.V.S., Oxide pyrochlores—a review, Prog. Solid State Chem., 1983, vol. 15, pp. 55–143.

    Article  CAS  Google Scholar 

  25. Radosavljevic, I., Evans, J.S.O., and Sleight, A.W., Synthesis and structure of pyrochlore-type bismuth titanate, J. Solid State Chem., 1998, vol. 136, pp. 63–66.

    Article  CAS  Google Scholar 

  26. Hinojosa, B.B., Nino, J.C., and Asthagiri, A., Fist-principles study of cubic Bi pyrochlores, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, paper 104123.https://doi.org/10.1103/PhysRevB.77.104123

  27. Merka, O., Bahnemann, D.W., and Wark, M., Photocatalytic hydrogen production with non-stoichiometric pyrochlore bismuth titanate, Catal. Today, 2014, vol. 225, pp. 102–110.https://doi.org/10.1016/j.cattod.2013.09.009

    Article  CAS  Google Scholar 

  28. Piir, I.V., Koroleva, M.S., Sekushin, N.A., et al., Synthesis, structure, and impedance spectra of iron-containing bismuth titanates, Russ. J. Electrochem., 2013, vol. 49, no. 8, pp. 817–821.https://doi.org/10.1134/S1023193513080168

    Article  CAS  Google Scholar 

  29. Piir, I.V., Koroleva, M.S., Ryabkov, Yu.I., et al., Bismuth iron titanate pyrochlores: thermostability, structure, properties, J. Solid State Chem., 2013, vol. 204, pp. 245–250.https://doi.org/10.1016/j.jssc.2013.05.031

    Article  CAS  Google Scholar 

  30. Koroleva, M.S., Piir, I.V., Ryabkov, Yu.I., et al., Synthesis and properties of chromium-containing bismuth titanate with the pyrochlore structure, Izv. Akad. Nauk, Ser. Khim., 2013, no. 2, pp. 410–413.

  31. Kunej, Š., Škapin, S.D., and Suvorov, D., Phase relations in the pyrochlore-rich part of the Bi2O3–TiO2–Nd2O3 system, J. Am. Ceram. Soc., 2009, vol. 92, no. 10, pp. 2373–2377.https://doi.org/10.1111/j.1551-2916.2009.03207.x

    Article  CAS  Google Scholar 

  32. Kunej, Š. and Suvorov, D., Dielectric properties of the Bi(1.6 – 0.8x)YxTi2O(6.4 – 0.3x) (0.03 < x < 2) pyrochlore solid solution, J. Am. Ceram. Soc., 2009, vol. 92, pp. 959–961.https://doi.org/10.1111/j.1551-2916.2009.02995.x

    Article  CAS  Google Scholar 

  33. Li, F., Liu, X., Zhao, J., et al., Red-orange photoluminescence and dielectric relation of Eu3+-doped Bi2Ti2O7 pyrochlore structure thin films, Mater. Chem. Phys., 2015, vol. 162, pp. 801–806.https://doi.org/10.1016/j.matchemphys.2015.07.006

  34. Mayfield, C.L. and Huda, M.N., Free energy landscape approach to aid pure phase synthesis of transition metal (X = Cr, Mn and Fe) doped bismuth titanate (Bi2Ti2O7), J. Cryst. Growth, 2016, vol. 444, pp. 46–54.https://doi.org/10.1016/j.jcrysgro.2016.03.038

  35. Lelievre, J. and Marchet, P., Structure and properties of Bi2Ti2O7 pyrochlore type phase stabilized by lithium, J. Alloys Compd., 2018, vol. 732, pp. 178–186.https://doi.org/10.1016/j.jallcom.2017.10.128

    Article  CAS  Google Scholar 

  36. Pelton, A.D. and Blander, M., Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach—application to silicate slags, Metall. Trans. B, 1986, vol. 17, pp. 805–815.

    Article  Google Scholar 

  37. Suleimenova, G.S. and Skorikov, V.M., Thermochemical study of gamma bismuth oxide based single crystals, Thermochim. Acta, 1992, vol. 196, pp. 203–211.

    Article  CAS  Google Scholar 

  38. Suleimenova, G.S. and Skorikov, V.M., Thermochemical studies of Bi4Ge3O12 and Bi4Ti3O12 single crystals, J. Therm. Anal., 1992, vol. 38, no. 5, pp. 1251–1256.

    Article  CAS  Google Scholar 

  39. Shaskol’skaya, M.P., Kristallografiya (Crystallography), Moscow: Vysshaya Shkola, 1984.

    Google Scholar 

  40. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.https://doi.org/10.1107/S0021889804015638

    Article  CAS  Google Scholar 

  41. Tret’yakov, Yu.D., Tverdofaznye reaktsii (Solid-State Reactions), Moscow: Khimiya, 1978.

  42. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and high-temperature heat capacity of Sm2Ge2O7 and Eu2Ge2O7, Inorg. Mater., 2018, vol. 54, no. 2, pp. 167–170. https://doi.org/10.1134/S0020168518020048

    Article  CAS  Google Scholar 

  43. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.https://doi.org/10.1134/S1063783410070073

    Article  CAS  Google Scholar 

  44. Pineda-Flores, J.L., Chavira, E., Reyes-Gasga, J., et al., Synthesis and dielectric characteristics of the layered structure Bi4 – xRxTi3O12 (Rx = Pr, Nd, Gd, Dy), J. Eur. Ceram. Soc., 2003, vol. 23, pp. 839–850.

    Article  CAS  Google Scholar 

  45. Hervoches, C.H. and Lightfoot, P., A variable-temperature powder neutron diffraction study of ferroelectric Bi4Ti3O12, Chem. Mater., 1999, vol. 11, pp. 3359–3364.

    Article  CAS  Google Scholar 

  46. Lomanova, N.A., Tomkovich, M.V., Ugolkov, V.L., and Gusarov, V.V., Formation and Thermal Properties of Nanocrystalline Bi4Ti3O12, Russ. J. Appl. Chem., 2017, vol. 90, no. 6, pp. 831–837.

    Article  CAS  Google Scholar 

  47. Akimov, A.I. and Savchuk, G.K., Synthesis and sintering of Bi2Ti4O11, Inorg. Mater., 2004, vol. 40, no. 7, pp. 716–720.https://doi.org/10.1023/B:INMA.0000034770.04111.12

    Article  CAS  Google Scholar 

  48. Kidchob, T., Malfatti, L., Marongiu, D., et al., Sol–gel processing of Bi2Ti2O7 and Bi2Ti4O11 films with photocatalytic activity, J. Am. Ceram. Soc., 2010, vol. 93, no. 9, pp. 2897–2902.https://doi.org/10.1111/j.1551-2916.2010.03796.x

    Article  CAS  Google Scholar 

  49. Zhang, Y., Zhang, Y., Fu, B., et al., Permittivity of citrate sol–gel derived Bi2Ti4O11 dielectric ceramics, Ceram. Int., 2015, vol. 41, pp. 10243–10249.https://doi.org/10.1016/j.ceramint.2015.04.137

    Article  CAS  Google Scholar 

  50. Kahlenberg, V. and Böhm, H., Investigations of the α–β transition in Bi2Ti4O11, J. Phys.: Condens. Matter, 1994, vol. 6, pp. 6221–6228.

    CAS  Google Scholar 

  51. Samsonov, G.V., Borisova, A.L., Zhidkova, E.G., et al., Fiziko-khimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of Oxides: A Handbook), Moscow: Metallurgiya, 1978.

  52. Vonsovskii, S.V., Magnetizm (Magnetism), Moscow: Nauka, 1971.

    Google Scholar 

  53. Potashinskii, A.Z. and Pokrovskii, V.L., Fluktuatsionnaya teoriya fazovykh perekhodov (Fluctuation Theory of Phase Transitions), Moscow: Nauka, 1982.

  54. Gusev, A.I., Nestekhiometriya, besporyadok, blizhnii i dal’nii poryadok v tverdom tele (Nonstoichiometry, Disorder, and Short- and Long-Range Order in Solids), Moscow: Fizmatlit, 2007.

  55. Strukov, B.A. and Levanyuk, A.P., Fizicheskie osnovy segnetoelektricheskikh yavlenii v kristallakh (Physical Principles of Ferroelectricity in Crystals), Moscow: Fizmatlit, 1983.

  56. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246.

    Article  CAS  Google Scholar 

  57. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., et al., High-temperature heat capacity of BaFe12O19 and BaSc0.5Fe11.5O19, Phys. Solid State, 2013, vol. 55, no. 1, S. 240–242.https://doi.org/10.1134/S1063783412120116

    Article  CAS  Google Scholar 

  58. Bush, A.A. and Popova, E.A., Heat capacity of the Pb5(Ge1 – xSix)3O11 ferroelectric system, Phys. Solid State, 2004, vol. 46, no. 5, pp. 902–907.https://doi.org/10.1134/1.1744969

    Article  CAS  Google Scholar 

  59. Denisova, L.T., Chumilina, L.G., Belousova, N.V., et al., High-temperature heat capacity of CdO–V2O5 oxides, Phys. Solid State, 2017, vol. 59, no. 12, pp. 2519–2523. https://doi.org/1134/S1063783417120344

    Article  CAS  Google Scholar 

  60. Leitner, J., Chuchvalec, P., Sedmidubcký, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Chumilina, L.G. et al. Heat Capacity of Compounds in the Bi2O3–TiO2 System. Inorg Mater 56, 597–604 (2020). https://doi.org/10.1134/S0020168520060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520060047

Keywords:

Navigation