Skip to main content
Log in

Epitaxial Growth of Fe3O4 Layers on the C-Plane of Sapphire by Pulsed Laser Deposition

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of substrate temperature and molecular oxygen pressure on the growth of thin (<180 nm) epitaxial Fe3O4(111) films on the C-plane of single-crystal sapphire (Al2O3(0001)) via pulsed laser evaporation. We have investigated the electrical properties, morphology, and structure of magnetite films grown under various conditions and the magnetic-field and temperature dependences of their resistivity. Fe3O4 has been shown to have a stable growth plateau (SGP) at pressures in the range (3–9) × 10–5 Torr and growth temperatures from 300 to 550°C. With increasing growth temperature, the SGP shifts to higher oxygen pressures. Analysis of the effect of film growth temperature indicates that optimal electrical characteristics and a more perfect crystal structure are ensured by elevated growth temperatures, above 400°C, whereas growth temperatures below 350°C make it possible to minimize the surface roughness of the films and improve their surface homogeneity. Annealing magnetite films under high vacuum above the growth temperature allows all of these requirements to be met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Prinz, G.A., Spin-polarized transport, Phys. Today, 1995, vol. 48, no. 4, pp. 58–63.

    Article  CAS  Google Scholar 

  2. Ziese, M., Hohne, R., Semmelhack, H.C., Reckentin, H., Hong, N.H., and Esquinazi, P., Mechanism of grain-boundary magnetoresistance in Fe3O4 films, Eur. Phys. J. B, 2002, vol. 28, no. 4, pp. 415–422.

    Article  CAS  Google Scholar 

  3. Ramos, V., Moussy, J.-B., Guittet, M.-J., Bataille, A.M., Gautier-Soyer, M., Viret, M., Gatel, C., Bayle-Guillemaud, P., and Snoeck, E., Magnetotransport properties of Fe3O4 epitaxial thin films: thickness effects driven by antiphase boundaries, J. Appl. Phys., 2006, vol. 100, no. 10, paper 103 902.

  4. Baibich, M.N., Broto, J.M., Fert, A., Nguen, Van Dau F., Petroff, F., Etienne, P., Creuxet, G., Freiderich, F., and Chazelas, J., Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattice, Phys. Rev. Lett., 1988, vol. 61, no. 21, pp. 2472–2475.

    Article  CAS  PubMed  Google Scholar 

  5. Li, X.W., Gupta, A., Xiao, G., and Gong, G.Q., Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films, J. Appl. Phys., 1998, vol. 83, no. 11, pp. 7049–7051.

    Article  CAS  Google Scholar 

  6. Walz, F., The Verwey transition—a topical review, J. Phys.: Condens. Matter, 2002, vol. 14, no. 12, pp. R285–R340.

    CAS  Google Scholar 

  7. Belov, K.L., Electronic processes in magnetite (or “Enigmas of magnetite”), Physics-Uspekhi (Advances in Physical Sciences), 1993, vol. 163, no. 5, pp. 53–66.

    CAS  Google Scholar 

  8. Tiwari, S., Prakash, R., Choudhary, R.J., and Phase, D.M., Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 16, pp. 4943–4952.

    Article  CAS  Google Scholar 

  9. Chapline, M.G. and Wang, S.X., Observation of the Verwey transition in thin magnetite films, J. Appl. Phys., 2005, vol. 97, no. 12, paper 123 901.

  10. Vescovo, E., Kim, H.-J., Ablett, J.M., and Chambers, S.A., Spin-polarized conduction in localized ferromagnetic materials: the case of Fe3O4 on MgO(100), J. Appl. Phys., 2005, vol. 98, no. 8, paper 084 507.

  11. Margulies, D.T., Parker, F.T., Spada, F.E., Goldman, R.S., Li, J., Sinclair, R., and Berkowitz, A.E., Anomalous moment and anisotropy behavior in Fe3O4 film, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 53, no. 14, pp. 9175–9187.

    Article  CAS  Google Scholar 

  12. Arora, S.K., Sofin, R.G.S., and Shvets, I.V., Magnetoresistance enhancement in epitaxial magnetite films grown on vicinal substrates, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 13, paper 134 404.

  13. Lazarov, V.K., Weinert, M., Chambers, S.A., and Gajdardziska-Josifovska, M., Atomic and electronic structure of the Fe3O4(111)/MgO(111) model polar oxide interface, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 19, paper 195 401.

  14. Martínez-Boubeta, C., Menendez, J.L., Costa-Krämer, J.L., Garcia, J.M., Anguita, J.V., Bescos, B., Cebollada, A., Briones, F., Chernykh, A.V., Malikov, I.V., and Mikhailov, G.M., Epitaxial metallic nanostructures on GaAs, Surf. Sci., 2001, vols. 482–485, pp. 910–915.

    Article  Google Scholar 

  15. Spiesser, A., Sharma, S., Saitoa, H., Jansena, R., Yuasaa, S., and Ando, K., Electrical spin injection in p‑type Si using Fe/MgO contacts, Proc. SPIE—Int. Soc. Opt. Eng., 2012, vol. 8461, paper 84 610K.

  16. Anderson, J.F., Kuhn, M., Diebold, U., Shaw, K., Stoyanov, P., and Lind, D., Surface structure and morphology of Mg-segregated epitaxial Fe3O4(001) thin films on MgO(001), Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 56, no. 15, pp. 9902–9909.

    Article  CAS  Google Scholar 

  17. Fonin, M., Dedkov, Yu.S., Mayer, J., Rüdiger, U., and Güntherodt, G., Preparation, structure, and electronic properties of Fe3O4 films on the Fe(110)/ Mo(110)/Al2O3(11\(\bar {2}\)0) substrate, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, no. 4, paper 045 414.

  18. Mikhailov, G.M., Malikov, I.V., and Chernykh, A.V., Novel class of metallic low-dimensional structures characterised by surface dominated electron transport, Phys. Low-Dimens. Struct., 1999, vols. 3–4, no. 3, pp. 1–24.

    Google Scholar 

  19. Zhang, X., Yang, S., Yang, Z., and Xu, X., Kinetics and intermediate phases in epitaxial growth of Fe3O4 films from deposition and thermal reduction, J. Appl. Phys., 2016, vol. 120, no. 8, paper 085 313.

  20. Yang, J.B., Zhou, X.D., Yelon, W.B., James, W.J., Cai, Q., Gopalakrishnan, K.V., Malik, S.K., Sun, X.C., and Nikles, D.E., Magnetic and structural studies of the Verwey transition in Fe3 – δO4 nanoparticles, J. Appl. Phys., 2004, vol. 95, no. 11, pp. 7540–7542.

    Article  CAS  Google Scholar 

  21. Gong, G.Q., Gupta, A., Xiao, G., Qian, W., and Dravid, V.P., Magnetoresistance and magnetic properties of epitaxial magnetite thin films, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 56, no. 9, pp. 5096–5099.

    Article  CAS  Google Scholar 

  22. Fernandez-Pacheco, A., Orna, J., De Teresa, J.M., Algarabel, P.A., Morellon, L., Pardo, M.R., Kampert, E., and Zeitler, U., High-field Hall effect and magnetoresistance in Fe3O4 epitaxial thin films up to 30 Tesla, Appl. Phys. Lett., 2009, vol. 95, no. 26, paper 262 108.

  23. Celotto, S. and Himba, T., Characterization of anti-phase boundaries in epitaxial magnetite films, Eur. Phys. J. B, 2003, vol. 36, no. 2, pp. 271–279.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Ministry of Education and Science, state program no. 007-00220-18-00.

We are grateful to V.Yu. Vinnichenko for his assistance in the experimental characterization of the films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Malikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikov, I.V., Berezin, V.A., Fomin, L.A. et al. Epitaxial Growth of Fe3O4 Layers on the C-Plane of Sapphire by Pulsed Laser Deposition. Inorg Mater 55, 42–48 (2019). https://doi.org/10.1134/S0020168519010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010072

Keywords:

Navigation