Skip to main content
Log in

Epitaxial Fe3O4 Films Grown on R-Plane Sapphire by Pulsed Laser Deposition

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the influence of growth temperature and molecular oxygen pressure on the properties of thin (≤180 nm) epitaxial magnetite (Fe3O4) (001) films grown by pulsed laser deposition on R-plane single-crystal sapphire (Al2O3 (\(\bar {1}\)012)) with and without MgO seed layer. The electrical, morphological, and structural characteristics of the films have been investigated as functions of growth conditions. Fe3O4 has been shown to have a stable growth plateau at pressures in the range (4–9) × 10–5 Torr. The properties of the epitaxial Fe3O4 films grown on a MgO seed layer (5 nm thick) approach those of magnetite films grown on single-crystal MgO substrates and are superior to those of films grown on pure R-plane sapphire. The best electrical characteristic of the films and the corresponding crystal structure can be obtained at elevated growth temperatures, whereas reduced growth temperatures minimize the roughness of their surface and maximize its homogeneity. These conditions can be reconciled by high-temperature high-vacuum annealing of magnetite films grown at reduced temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, Z. and Satpathy, S., Electron states, magnetism, and the Verwey transition in magnetite, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, vol. 44, no. 24, pp. 13 319–13 331. https://doi.org/10.1103/PhysRevB.44.13319

  2. Matsushita, Y.-I., Madjarova, G., Dewhurst, J.K., Shallcross, S., Felser, C., Sharma, S., and Gross, E.K.U., Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study, J. Phys. D: Appl. Phys., 2017, vol. 50, no. 9, paper 095 002. https://doi.org/10.1088/1361-6463/aa5441

  3. Wu, H.-C., Syrlybekov, A., Mauit, O., Mouti, A., Coileain, C.O., Abid, M., Abid, M., and Shvets, I.V., Magnetic and transport properties of epitaxial stepped Fe3O4 (100) thin films, Appl. Phys. Lett., 2014, vol. 105, no. 13, paper 132 408. https://doi.org/10.1063/1.4897001

  4. Alraddadi, S., Hines, W., Yilma, T., Gu, G.D., and Sinkovic, B., Structural phase diagram for ultra-thin epitaxial Fe3O4/MgO (001) films: thickness and oxygen pressure dependence, J. Phys.: Condens. Matter, 2016, vol. 28, no. 11, paper 115 402. https://doi.org/10.1088/0953-8984/28/11/115402

  5. Greullet, F., Snoeck, E., Tiusan, C., Hehn, M., Lacour, D., Lenoble, O., Magen, C., and Calmels, L., Large inverse magnetoresistance in fully epitaxial Fe/Fe3O4/MgO/CoFe/Fe3O4/MgO/Co magnetic tunnel junctions, Appl. Phys. Lett., 2008, vol. 92, no. 5, paper 053 508. https://doi.org/10.1063/1.2841812

  6. Ramos, V., Moussy, J.-B., Guittet, M.-J., Bataille, A.M., Gautier-Soyer, M., Viret, M., Gatel, C., Bayle-Guillemaud, P., and Snoeck, E., Magnetotransport properties of Fe3O4 epitaxial thin films: thickness effects driven by antiphase boundaries, J. Appl. Phys., 2006, vol. 100, no. 10, paper 103 902. https://doi.org/10.1063/1.2386927

  7. Fujii, T., Takano, M., Katano, R., Bando, Y., and Isozumi, Y., Preparation and characterization of (111) oriented Fe3O4 films deposited on sapphire, J. Appl. Phys., 1989, vol. 66, no. 7, pp. 3168–3172. https://doi.org/10.1063/1.344154

    Article  CAS  Google Scholar 

  8. Fonin, M., Dedkov, Yu.S., Mayer, J., Rüdiger, U., and Güntherodt, G., Preparation, structure, and electronic properties of Fe3O4 films on the Fe(110)/ Mo(110)/Al2O3(11\(\bar {2}\)0) substrate, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, no. 4, paper 045 414. https://doi.org/10.1103/PhysRevB.68.045414

  9. Weiss, W. and Ritter, M., Metal oxide heteroepitaxy: Stranski–Krastanov growth for iron oxides on Pt (111), Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, no. 7, pp. 5201–5213. https://doi.org/10.1103/PhysRevB.59.5201

    Article  CAS  Google Scholar 

  10. Dedkov, Yu.S., Rüdiger, U., and Güntherodt, G., Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, no. 6, paper 064 417. https://doi.org/10.1103/PhysRevB.65.064417

  11. Baldrati, L., Schneider, C., Niizeki, T., Ramos, R., Cramer, J., Ross, A., Saitoh, E., and Kläui, M., Spin transport in multilayer systems with fully epitaxial NiO thin films, Phys. Rev. B: Condens. Matter Mater. Phys., 2018, vol. 98, no. 1, paper 014 409. https://doi.org/10.1103/PhysRevB.98.014409

  12. Kumar, A., Pandya, D.K., and Chaudhary, S., Structural, electronic, and magnetic behavior of two dimensional epitaxial Fe3O4/TiN/Si(100) system, Appl. Phys. Lett., 2013, vol. 102, no. 15, paper 152 406. https://doi.org/10.1063/1.4802235

  13. Fontijn, W.F.J., Metselaar, R., and Zaag, P.J., Investigation of the stoichiometry of MBE-grown Fe3O4 layers by magneto-optical Kerr spectroscopy, Thin Solid Films, 1997, vol. 292, nos. 1–2, pp. 270–276. https://doi.org/10.1016/S0040-6090(96)08910-9

    Article  CAS  Google Scholar 

  14. Ogale, S.B., Ghosh, K., Sharma, R.L., Greene, R.P., Ramesh, R., and Venkatesan, T., Magnetotransport anisotropy effects in epitaxial magnetite (Fe3O4) thin films, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, no. 13, pp. 7823–7828. https://doi.org/10.1103/PhysRevB.57.7823

    Article  CAS  Google Scholar 

  15. Liu, X.H., Liu, W., and Zhang, Z.D., Extremely low coercivity in Fe3O4 thin film grown on Mg2TiO4 (001), RSC Adv., 2017, vol. 7, no. 69, pp. 43 648–43 654.

  16. Claassen, J.H., Wolf, S.A., Qadri, S.B., and Jones, L.D., Epitaxial growth of niobium thin films, J. Cryst. Growth, 1987, vol. 81, no. 1, pp. 557–561. https://doi.org/10.1016/0022-0248(87)90454-4

    Article  CAS  Google Scholar 

  17. Stampe, P.F., Bullock, M., Tucker, W.P., and Kennedy, R.J., Growth of MgO thin films on M-, A-, C- and R-plane sapphire by laser ablation, J. Phys. D: Appl. Phys., 1999, vol. 32, no. 15, pp. 17 778–17 787. https://doi.org/10.1088/0022-3727/32/15/304

  18. Chernikh, A., Vinnichenko, V., Fomin, L., Malikov, I., and Mikhailov, G., Fabrication of epitaxial tunnel magnetic junctions Fe/MgO/Fe(001) using pulse laser deposition, Proc. Int. Conf. on Micro and Nanoelectronics, Zvenigorod, 2012, paper P1-19.

  19. Malikov, I.V., Fomin, L.A., Vinnichenko, V.Y., and Mikhailov, G.M., Epitaxial Fe films and structures, Proc. SPIE–Int. Soc. Opt. Eng., 2008, vol. 7025, paper 70250U. https://doi.org/10.1117/12.802420

  20. Mikhailov, G.M., Malikov, I.V., and Chernykh, A.V., Novel class of metallic low-dimensional structures characterised by surface dominated electron transport, Phys. Low-Dim.Struct., 1999, vols. 3–4, no. 3, pp. 1–24.

    Google Scholar 

  21. Martinez-Boubeta, C., Menendez, J.L., Costa-Krämer, J.M., Garcia, J.L., Anguita, J.V., Bescos, B., Cebollada, A., Briones, F., Chernykh, A.V., Malikov, I.V., and Mikhailov, G.M., Epitaxial metallic nanostructures on GaAs, Surf. Sci., 2001, vols. 482–485, part 2, pp. 910–915. https://doi.org/10.1016/S0039-6028(01)00728-2

    Article  Google Scholar 

  22. Spiesser, A., Sharma, S., Saito, H., Jansen, R., Yuasa, S., and Ando, K., Electrical spin injection in p-type Si using Fe/MgO contacts, Proc. SPIE–Int. Soc. Opt. Eng., 2012, vol. 8461, paper 84610K. https://doi.org/10.1117/12.930839

  23. Malikov, I.V., Berezin, V.A., Fomin, L.A., and Mikhailov, G.M., Epitaxial growth of Fe3O4 layers on the C‑plane of sapphire by pulsed laser deposition, Inorg. Mater., 2019, vol. 55, no. 1, pp. 42–48. https://doi.org/10.1134/S0020168519010072

    Article  CAS  Google Scholar 

  24. Fonin, M., Pentcheva, R., Dedkov, Yu.S., Sperlich, M., Vyalikh, D.V., Scheffler, M., Rüdiger, U., and Güntherodt, G., Surface electronic structure of the Fe3O4(100): evidence of a half-metal to metal transition, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 10, paper 104 436. https://doi.org/10.1103/PhysRevB.72.104436

  25. Anderson, J.F., Kuhn, M., Diebold, U., Shaw, K., Stoyanov, P., and Lind, D., Surface structure and morphology of Mg-segregated epitaxial Fe3O4(001) thin films on MgO(001), Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 56, no. 15, pp. 9902–9909. https://doi.org/10.1557/PROC-474-265

    Article  CAS  Google Scholar 

  26. Tricker, D.M. and Stobbs, W.M., Interface structure and overgrowth orientation for niobium and molybdenum films on sapphire substrates: II. R-Plane substrates, Philos. Mag. A, 1995, vol. 71, no. 5, pp. 1051–1067. https://doi.org/10.1080/01418619508236236

    Article  CAS  Google Scholar 

  27. Tiusan, C., Faure-Vincent, J., Bellouard, C., Hehn, M., Jouguelet, E., and Schuhl, A., Interfacial resonance state probed by spin-polarized tunneling in epitaxial Fe/MgO/Fe tunnel junctions, Phys. Rev. Lett., 2004, vol. 93, no. 10, paper 106 602. https://doi.org/10.1103/PhysRevLett.93.106602

  28. Popova, E., Faure-Vincent, J., Tiusan, C., Bellou, C., Montaigne, F., Alnot, M., Andrieu, S., Schuh, A., Snoeck, E., and Costa, V., Epitaxial MgO layer for low-resistance and coupling-free magnetic tunnel junctions, Appl. Phys. Lett., 2002, vol. 81, no. 6, pp. 1035–1037. https://doi.org/10.1063/1.1498153

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.Yu. Vinnichenko for his assistance in the experimental characterization of the films and to D.V. Irzhak for performing the X-ray diffraction measurements.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state program no. 075-00475-19-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Malikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikov, I.V., Berezin, V.A., Fomin, L.A. et al. Epitaxial Fe3O4 Films Grown on R-Plane Sapphire by Pulsed Laser Deposition. Inorg Mater 56, 164–171 (2020). https://doi.org/10.1134/S0020168520020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020120

Keywords:

Navigation