Skip to main content
Log in

Modification of Polyethylene Terephthalate by Low-Temperature Plasma for Use in Medicine and Biology

  • REVIEW
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

An analysis of the literature on polyethylene terephthalate modification by low-temperature plasma treatment is presented. The use of modern instrumental methods (measurement of contact angles and calculations of surface energy and its components, X-ray photoelectron spectroscopy and FTIR spectroscopy, atomic force and scanning electron microscopy) for studying the properties of processed polymer samples is considered. The change in contact properties, chemical structure, and morphology of the modified surface of polyethylene terephthalate is shown. Data on studying hemocompatibility, antibacterial activity, and cell adhesion and proliferation after plasma treatment of polyethylene terephthalate are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Weltmann, K.-D., Kolb, J.F., Holub, M., Uhrlandt, D., Šimek, M., Ostrikov, K., Hamaguchi, S., Cvelbar, U., Černák, M., Locke, B., Fridman, A., Favia, P., and Becker, K., Plasma Process. Polym., 2019, vol. 16, no. 1, 1800118.

    Article  CAS  Google Scholar 

  2. Bekeschus, S., Favia, P., Robert, E., and von Woedtke, T., Plasma Process. Polym., 2019, vol. 16, no. 1, 1800033.

    Article  CAS  Google Scholar 

  3. Xaubet, M., Baudler, J.-S., Gerling, T., Giuliani, L., Minotti, F., Grondona, D., von Woedtke, T., and Weltmann, K.-D., Plasma Process. Polym., 2018, vol. 15, no. 8, 1700211.

    Article  CAS  Google Scholar 

  4. Siow, K.S., Plasma Process. Polym., 2018, vol. 15, no. 9, 1800059.

    Article  CAS  Google Scholar 

  5. Maitz, M.F., Biosurf. Biotribol., 2015, vol. 1, p. 161.

    Article  Google Scholar 

  6. Shi, L., Guo, Z.G., and Liu, W.M., Biosurf. Biotribol., 2015, vol. 1, p. 81.

    Article  Google Scholar 

  7. Kim, M.S., Kim, J.H., Min, B.H., Chun, H.J., Han, D.K., and Lee, H.B., Polym. Rev., 2011, vol. 51, no. 1, p. 23.

    Article  CAS  Google Scholar 

  8. Yoshida, S., Hagiwara, K., Hasebe, T., and Hotta, A., Surf. Coat. Technol., 2013, vol. 233, p. 99.

    Article  CAS  Google Scholar 

  9. Jacobs, T., Morent, R., and De Geyter, N., Plasma Chem. Plasma Process., 2012, vol. 32, no. 5, p. 1039.

    Article  CAS  Google Scholar 

  10. Non-thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields, Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., and Praveen, K.M., Eds., Amsterdam: Elsevier, 2019.

    Google Scholar 

  11. Nguyen, D.B., Mok, Y.S., Huynh, D.L., Jeong, D.K., and Lee, W.G., Plasma Process. Polym., 2019, vol. 16, no. 8, 1800173.

    Article  CAS  Google Scholar 

  12. Vesel, A. and Mozetič, M., J. Phys. D: Appl. Phys., 2017, vol. 50, 293001.

    Article  CAS  Google Scholar 

  13. Fabbri, P. and Messori, M., Modification of Polymer Properties, Jasso-Gastinel, C.F. and Kenny, J.M., Eds., Cambridge: William Andrew, 2016, p. 109.

  14. Entsiklopediya nizkotemperaturnoi plazmy. Vvodnyi tom IV (Encyclopedia of Nonthermal Plasma: Introductory Volume IV) Fortov, V.E., Ed., Moscow: Nauka, 2000.

    Google Scholar 

  15. Arpagaus, C., Oberbossel, G., and von Rohr, P.R., Plasma Process. Polym., 2018, vol. 15, 1800133.

    Article  CAS  Google Scholar 

  16. Plasma Science and Technology: Progress in Physical States and Chemical Reactions, Mieno, T., Ed., Rijeka: InTech, 2016.

    Google Scholar 

  17. Friedrich, J., The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design, Weinheim: Wiley, 2012.

    Book  Google Scholar 

  18. Piskarev, M.S., Skryleva, E.A., Senatulin, B.R., Gilman, A.B., and Kuznetsov, A.A., High Energy Chem., 2020, vol. 54, no. 4, p. 199.

    Google Scholar 

  19. Vesel, A., Recek, N., Motaln, H., and Mozetic, M., Plasma, 2018, vol. 1, p. 12.

    Article  Google Scholar 

  20. Cvelbar, U., Junkar, I., and Modic, M., Jpn. J. Appl. Phys., 2011, vol. 50, p. JF02.

    Article  CAS  Google Scholar 

  21. Savoji, H., Lerouge, S., Ajji, A., and Wertheimer, M.R., Plasma Process. Polym., 2015, vol. 12, no. 4, p. 314.

    Article  CAS  Google Scholar 

  22. Jaganjac, M., Vesel, A., Milkovic, L., Recek, N., Kolar, M., Zarkovic, N., Latiff, A., Kleinschek, K-S., and Mozetic, M., J. Biomed. Mater. Res., Part A, 2014, vol. 102, no. 7, p. 2305.

    Article  CAS  Google Scholar 

  23. Oteyaka, M.O., Chevallier, P., Turgeon, S., Robitaille, L., and Laroche, G., Plasma Chem. Plasma Process., 2012, vol. 32, p. 17.

    Article  CAS  Google Scholar 

  24. Junkar, I., Vesel, A., Cvelbar, U., Mozetic, M., and Strnad, S., Vacuum, 2010, vol. 84, p. 83.

    Article  CAS  Google Scholar 

  25. Li, F., Wang, J., Sun, H., and Huang, N., Plasma Sci. Technol., 2010, vol. 12, no. 2, p. 235.

    Article  CAS  Google Scholar 

  26. Vesel, A. and Mozetic, M., J. Phys.: Conf. Ser., 2008, vol. 100, 012027.

    Google Scholar 

  27. Vesel, A., Junkar, I., Cvelbar, U., Kovac, J., and Mozetic, M., Surf. Interface Anal., 2008, vol. 40, p. 1444.

    Article  CAS  Google Scholar 

  28. Katsikogianni, M.G., Syndrevelis, C.S., Amanatides, E.K., Mataras, D.S., and Missirlis, Y.F., Plasma Process. Polym., 2007, vol. 4, p. 1046.

    Article  Google Scholar 

  29. Papakonstantinou, D., Amanatides, E., Mataras, D., Ioannidis, V., and Nikolopoulos, P., Plasma Process. Polym., 2007, vol. 4, p. 1057.

    Article  Google Scholar 

  30. Pezzatini, S., Morbidelli, L., Gristina, R., Favia, P., and Ziche, M., Nanotechnology, 2006, vol. 19, 275101.

    Article  CAS  Google Scholar 

  31. Li, F., Wang, J., Sun, H., and Huang, N., Key Eng. Mater., 2005, vols. 288–289, p. 421.

    Article  Google Scholar 

  32. Cioffi, M.O.H., Voorwald, H.J.C., and Mota, R.P., Mater. Charact., 2003, vol. 50, p. 209.

    Article  CAS  Google Scholar 

  33. Pu, F.R., Williams, R.L., Markkula, T.K., and Hunt, J.A., Biomaterials, 2002, vol. 23, p. 2411.

    Article  CAS  PubMed  Google Scholar 

  34. Ramires, P.A., Mirenghi, L., Romano, A.R., Palumbo, F., and Nicolardi, G., J. Biomed. Mater. Res., 2000, vol. 51, p. 535.

    Article  CAS  PubMed  Google Scholar 

  35. Chen, Y.-H., Hsu, C.-C., and He, J.-L., Surf. Coat. Technol., 2013, vol. 232, p. 868.

    Article  CAS  Google Scholar 

  36. Elinson, V., Lyamin, A., Kravets, L., Kikot, I., and Sylnitskaya, O., High Temp. Mater. Process., 2014, vol. 18, no. 3, p. 215.

    Google Scholar 

  37. Ryazantseva, T.V., Kravets, L.I., and Elinson, V.M., Inorg. Mater.: Appl. Res., 2012, vol. 3, no. 5, p. 408.

    Article  Google Scholar 

  38. Ryazantseva, T.V., Kravets, L.I., and Elinson, V.M., Surf. Coat. Technol., 2011, vol. 205, p. 562.

    Article  CAS  Google Scholar 

  39. Kravets, L.I., Gilman, A.B., Yablokov, M.Yu., Satulu, V., Mitu, B., and Dinescu, G., High Temp. Mater. Process., 2015, vol. 19, no. 1, p. 1.

    Article  Google Scholar 

  40. Shcherbina, A.A. and Chalykh, A.E., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 3, p. 341.

    Article  CAS  Google Scholar 

  41. Kumar, D.S., Fujioka, M., Asano, K., Shoji, A., Jayakrishnan, A., and Yoshida, Y., J. Mater. Sci.: Mater. Med., 2007, vol. 18, p. 1831.

    CAS  Google Scholar 

  42. Zhang, Y., Ishikawa, K., Mozeti, M., Tsutsumi, T., Kondo, H., Sekine, M., and Hori, M., Plasma Process. Polym., 2019, vol. 16, no. 6, 1800175.

    Article  CAS  Google Scholar 

  43. Jingrun, R., Jin, W., Hong, S., and Nan, H., Appl. Surf. Sci., 2008, vol. 255, p. 263.

    Article  CAS  Google Scholar 

  44. Zhu, A-P., Zhao, F., and Fang, N., J. Biomed. Mater. Res., 2008, vol. 86A, no. 2, p. 467.

    Article  CAS  Google Scholar 

  45. Cen, L., Neoh, K.G., Ying, L., and Kang, E.T., Surf. Interface Anal., 2004, vol. 36, p. 716.

    Article  CAS  Google Scholar 

  46. Chandy, T., Dasm G.S., Wilsonm R.F., and Rao, G.H.R, Biomaterials, 2000, vol. 21, p. 699.

    Article  CAS  PubMed  Google Scholar 

  47. Donegan, M., Milosavljevic, V., and Dowling, D.P., Plasma Chem. Plasma Process., 2013, vol. 33, p. 941.

    Article  CAS  Google Scholar 

  48. Gonzalez, E., Barankin, M.D., Guschl, P.C., and Hicks, R.F., Langmuir, 2008, vol. 24, no. 21, p. 12636.

    Article  CAS  PubMed  Google Scholar 

  49. Piskarev, M.S., Gilman, A.B., Gatin, A.K., Gaidar, A.I., Kurkin, T.S., and Kuznetsov, A.A., High Energy Chem., 2019, vol. 57, no. 1, p. 76.

    Article  Google Scholar 

  50. Demina, T.S., Piskarev, M.S., Romanova, O.A., Gatin, A.K., Senatulin, B.R., Skryleva, E.A., Zharikova, T.M., Gilman, A.B., Kuznetsov, A.A., Akopova, T., and Timashev, P.S., Materials, 2020, vol. 13, no. 3, p. 508.

    Article  CAS  PubMed Central  Google Scholar 

  51. Kolská, Z., Reznicková, A., Nagyová, M., Slepicková-Kasálková, N., Sajdl, P., Slepicka, P., and Svorcik, V., Polym. Degrad. Stab., 2014, vol. 101, p. 1.

    Article  CAS  Google Scholar 

  52. Slepika, P., Slepicková-Kasálková, N., Stránská, E., Baáková, L., and Svorcik, V., eXPRESS Polym. Lett., 2013, vol. 7, no. 6, p. 535.

    Article  CAS  Google Scholar 

  53. Kotal, V., Svorcık, V., Slepicka, P., Sajdl, P., Blahova, O., Sutta, P., and Hnatowicz, V., Plasma Process. Polym., 2007, vol. 4, p. 69.

    Article  CAS  Google Scholar 

  54. Zaplotnik, R., Vesel, A., and Mozetič, M., Plasma Process. Polym., 2018, vol. 15, no. 9, 1800021.

    Article  CAS  Google Scholar 

  55. Hamerli, P., Weigel, Th., Groth, Th., and Paul, D., Biomaterials, 2003, vol. 24, p. 3989.

    Article  CAS  PubMed  Google Scholar 

  56. Shi, M.K., Dunham, G., Gross, M.E., Graff, G.L., and Martin, P.M., J. Adhesion Sci. Technol., 2000, vol. 14, no. 12, p. 1485.

    Article  CAS  Google Scholar 

  57. Gouveia, I.C., Antunes, L.C., and Gomes, A.P., J. Text. Inst., 2011, vol. 102, no. 3, p. 203.

    Article  CAS  Google Scholar 

  58. Ni, W., Liu, D., Song, Y., Ji, L., Zhang, Q., and Niu, J., Eur. Phys. J. Appl. Phys, 2013, vol. 61, p. 10801.

    Article  CAS  Google Scholar 

  59. Mui, T.S.M., Mota, R.P., Quade, A., de Oliveira, Hein L.R., and Kostov, K.G., Surf. Coat. Technol., 2018, vol. 352, p. 338.

    Article  CAS  Google Scholar 

  60. Homola, T., Wu, L.Y.L., and Černák, M., J. Adhesion, 2014, vol. 90, no. 4, p. 296.

    Article  CAS  Google Scholar 

  61. Yun, T.K., Kim, J.H., and Lee, D.K., Mol. Cryst. Liq. Cryst., 2014, vol. 586, no. 1, p. 188.

    Article  CAS  Google Scholar 

  62. Sophonvachiraporn, P., Rujiravanit, R., Sreethawong, T., Tokura, S., and Chavadej, S., Plasma Chem. Plasma Process., 2011, vol. 31, p. 233.

    Article  CAS  Google Scholar 

  63. De Geyter, N., Morent, R., and Leys, C., Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, vol. 266, p. 3086.

    CAS  Google Scholar 

  64. Onsuratoom, S., Rujiravanit, R., Sreethawong, T., Tokura, S., and Chavadej, S., Plasma Chem. Plasma Process., 2010, vol. 30, p. 191.

    Article  CAS  Google Scholar 

  65. Topala, I., Dumitrascu, N., and Pohoata, V., Plasma Chem. Plasma Process., 2007, vol. 27, p. 95.

    Article  CAS  Google Scholar 

  66. Rezaei, F., Dickey, M.D., Bourham, M., and Hauser, P.J., Surf. Coat. Technol., 2017, vol. 309, p. 371.

    Article  CAS  Google Scholar 

  67. Leroux, F., Perwuelz, A., Campagne, C., and Behary, N., J. Adhesion Sci. Technol., 2006, vol. 20, no. 9, p. 939.

    Article  CAS  Google Scholar 

  68. Williams, T.S., Yu, H., and Hicks, R.F., Rev. Adhesion Adhesives, 2013, vol. 1, no. 1, p. 46.

    Article  Google Scholar 

  69. Gotoh, K., Kobayashi, Y., Yasukawa, A., and Ishigami, Y., Colloid Polym. Sci., 2012, vol. 290, p. 1005.

    Article  CAS  Google Scholar 

  70. Dumitrascu, N., Topala, I., and Popa, G., IEEE Trans. Plasma Sci., 2005, vol. 33, no. 5, p. 1710.

    Article  CAS  Google Scholar 

  71. Kerkeni, A., Behary, N., Dhulster, P., Chihib, N.E., and Perwuelz, A., J. Appl. Polym. Sci., 2013, vol. 129, no. 2, p. 866.

    Article  CAS  Google Scholar 

  72. Reisinger, B., Fahrner, M., Frischauf, I., Yakunin, S., Svorcik, V., Fiedorowicz, H., Bartnik, A., Romanin, C., and Heitz, J., Appl. Phys. A, 2010, vol. 100, p. 511.

    Article  CAS  Google Scholar 

  73. Bartnik, A., Fiedorowicz, H., Jarocki, R., Kostecki, J., Szczurek, M., Bilinski, A., Chernyayeva, O., and Sobczak, J.W., Appl. Phys. A, 2010, vol. 99, p. 831.

    Article  CAS  Google Scholar 

  74. Dadsetan, M., Mirzadeh, H., Sharifi-Sanjani, N., and Daliri, M., J. Biomed. Mater. Res., Part B, 2001, vol. 57, p. 183.

    CAS  Google Scholar 

  75. Wu, G., Paz, M.D., Chiussi, S., Serra, J., Gonzalez, P., Wang, Y.J., and Leon, B., J. Mater. Sci.: Mater. Med., 2009, vol. 20, p. 597.

    CAS  Google Scholar 

  76. Piskarev, M.S., Zinov’ev, A.V., Gilman, A.B., Kechek’yan, A.S., and Kuznetsov, A.A., Polym. Sci., Ser. D, 2019, vol. 12, no. 2, p. 159.

    CAS  Google Scholar 

  77. Mirenghi, L., Ramires, P.A., Pentassuglia, R.E., Rotolo, P., and Romito, A., J. Mater. Sci.: Mater. Med., 2000, vol. 11, p. 327.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation and the Russian Foundation for Basic Research, project no. 18-32-00901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Gilman.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilman, A.B., Piskarev, M.S. & Kuznetsov, A.A. Modification of Polyethylene Terephthalate by Low-Temperature Plasma for Use in Medicine and Biology. High Energy Chem 55, 114–122 (2021). https://doi.org/10.1134/S0018143921020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921020065

Keywords:

Navigation