Skip to main content
Log in

Surface Characterization and Antimicrobial Activity of Chitosan-Deposited DBD Plasma-Modified Woven PET Surface

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, a woven PET with an antimicrobial activity was prepared by depositing chitosan on its surface. Firstly, the hydrophilic property of the PET surface was achieved by a plasma treatment using dielectric barrier discharge (DBD). The hydrophilic property of the PET surface was characterized by wickability and contact angle measurements. The XPS analysis revealed an increment of oxygen-containing polar groups, such as C–O and O–C=O, on the PET surface after the plasma treatment, resulting in an enhanced hydrophilic property. The plasma-treated PET specimen was further deposited with chitosan by immersing in a chitosan acetate aqueous solution. The effects of temperature, chitosan concentration, and number of rinses on the amount of deposited chitosan on the PET surface were investigated. The disappearance of the above-mentioned polar groups from the PET surface was clearly observed after the chitosan deposition, indicating the involvement of these functional groups in interacting with the chitosan. The chitosan-deposited plasma-treated woven PET possessed an exceptionally high antimicrobial activity against both E. coli (gram-negative bacteria) and S. aureus (gram-positive bacteria).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ko TM, Cooper SL (1994) Frontiers of polymers and advanced materials. Plenum Press, New York

    Google Scholar 

  2. Strobel M, Lyons CS, Mittal KL (1994) Plasma surface modification of polymers: relevance to adhesion. VSP, Utrecht

    Google Scholar 

  3. Wypych J (1988) Polymer modified textile materials. Wiley, New York

    Google Scholar 

  4. Chan CM (1994) Polymer surface modification and characterization. Hanser, New York

    Google Scholar 

  5. Meister J (2000) Polymer modification: principles, technique, and application. Maarcel Dekker, New York

    Google Scholar 

  6. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Surf Coat Technol 202:3427

    Article  Google Scholar 

  7. Carneiro N, Souto AP, Silva E, Marimba A, Tena B, Ferreira H, Magalhaes V (2001) Color Technol 117:298

    Article  Google Scholar 

  8. Brooks D, Giles GA (2002) PET packaging technology. Sheffield Academic, England

    Google Scholar 

  9. Scheirs J, Long TE (2003) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, New York

    Google Scholar 

  10. De Geyter N, Morent R, Leys C (2006) Surf Coat Technol 201:2460

    Article  Google Scholar 

  11. Onsuratoom S, Rujiravanit R, Sreethawong T, Tokura S, Chavadej S (2010) Plasma Chem Plasma Process 30:191

    Article  Google Scholar 

  12. Muzzarelli RAA (1977) Chitin. Pergamon Press, New York

    Google Scholar 

  13. Roberts GAF (1992) Chitin chemistry. Macmillan Press, London

    Google Scholar 

  14. Dunn ET, Li Q, Grandmaison EW, Goosen MFA (1997) Applications of chitin and chitosan. Technomic Publishing Company, Inc, Lancaster

    Google Scholar 

  15. Huh MW, Kang IK, Lee DH, Kim WS, Lee DH, Park LS, Min KE, Seo KH (2001) J Appl Polym Sci 81:2769

    Article  Google Scholar 

  16. Yang MR, Chen KS, Tsai JC, Tseng CC, Lin SF (2002) Mater Sci Eng C 20:167

    Article  Google Scholar 

  17. Jou CH, Lee JS, Chou WL, Yu DG, Yang MC (2005) Polym Advan Technol 16:821

    Article  Google Scholar 

  18. Zhang X, Bai R (2003) J Appl Polym Sci 90:3973

    Article  Google Scholar 

  19. Liu Y, He T, Gao C (2005) Colloid Surface B: Biointerf 46:117

    Article  ADS  Google Scholar 

  20. Fu J, Ji J, Yuan W, Shen J (2005) Biomaterials 26:6684

    Article  Google Scholar 

  21. Li J, Wang J, Li P, Weng Y, Ren L, Fei X, Sun H, Huang N (2007) Key Eng Mater 342–343:809

    Article  Google Scholar 

  22. Jung KH, Huh MW, Meng W, Yuan J, Hyun SH, Bae JS, Hudson SM, Kang IK (2007) J Appl Polym Sci 105:2816

    Article  Google Scholar 

  23. Lopes-da-Silva JA, Veleirinho B, Delgadillo I (2009) J Nanosci Nanotechnol 9:3798

    Article  Google Scholar 

  24. Chavadej S, Kiattubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) J Mol Catal A: Chem 263:128

    Article  Google Scholar 

  25. Baxter A, Dillon M, Taylor KDA, Roberts GAF (1992) Inter J Biol Macromol 14:166

    Article  Google Scholar 

  26. Wang W, Bo S, Li S, Qin W (1991) Inter J Biol Macromol 13:281

    Article  Google Scholar 

  27. Li Y, Leung P, Yao L, Song QW, Newton E (2006) J Hosp Infect 62:58

    Article  Google Scholar 

  28. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1

    Article  Google Scholar 

  29. Takahashi T, Imai M, Suzuki I, Sawai J (2008) Biochem Eng J 40:485

    Article  Google Scholar 

  30. Sudardshan NR, Hoover DG, Knorr D (1992) Food Biotechnol 6:257

    Article  Google Scholar 

  31. Liu H, Du Y, Wang X, Sun L (2004) Inter J Food Microbiol 95:147

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thai Negoro Co., Ltd., Thailand; the Sustainable Petroleum and Petrochemicals Research Unit, Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand; and the Petrochemical and Environmental Catalysis Research Unit under the Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, Thailand. The authors would also like to thank Dr. Hideaki Nagahama, Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Japan for his assistance in the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratana Rujiravanit or Thammanoon Sreethawong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sophonvachiraporn, P., Rujiravanit, R., Sreethawong, T. et al. Surface Characterization and Antimicrobial Activity of Chitosan-Deposited DBD Plasma-Modified Woven PET Surface. Plasma Chem Plasma Process 31, 233–249 (2011). https://doi.org/10.1007/s11090-010-9276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9276-x

Keywords

Navigation