Skip to main content
Log in

Low Pressure Radio Frequency Ammonia Plasma Surface Modification on Poly(ethylene terephthalate) Films and Fibers: Effect of the Polymer Forming Process

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We investigated the effect of a polyethylene terephthalate (PET) forming process on radiofrequency ammonia plasma surface-treated PET flat films and fibres obtained by melt blowing. Ammonia plasma treatment allowed for the incorporation of amino functionalities on both the film and fibre surfaces, with higher values observed at very short treatment times. This plasma treatment also induced polymer chain scissions which were observed as the formation of hydrophilic nodules that coalesced together and were loosely bound to the underlying polymeric materials. These plasma-induced surface damages were notably more important on the melt-blown PET fibres. Consequently, maximisation of the surface amino groups with minimal polymer chain breaking was achieved using very short plasma treatment times (typically 1 s). We also demonstrated that the polymer forming process must be taken into account when plasma modifications are to be performed on PET, as it may already lead to polymer chain breakings subsequently added to those induced in the plasma environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Inagaki N, Narushim K, Tuchida N, Miyazaki K (2004) J Polym Sci Part B Polym Phys 42:3727–3740

    Article  ADS  Google Scholar 

  2. Navaneetha Pandiyaraj K, Selvarajan V, Deshmukh RR, Gao C (2008) Vacuum 83:332–339

    Article  Google Scholar 

  3. Yang L, Chen J, Guo Y, Zhang Z (2009) Appl Surf Sci 255:4446–4451

    Article  ADS  Google Scholar 

  4. Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surf Interf Anal 40:1444–1453

    Article  Google Scholar 

  5. Janca J, Stahel P, Buchta J, Subedi D, Krcma F, Pryckova J (2001) Plasmas Polym 6:15–26

    Article  Google Scholar 

  6. Wang GJ, Liu YW, Guo YJ, Zhang ZX, Xu MX, Yang ZX (2007) Surf Coat Technol 201:6565–6568

    Article  Google Scholar 

  7. Öktem T, Ayhan H, Seventekin N, Piskin E (1999) J Soc Dyers Colour 115:274–279

    Google Scholar 

  8. Wang CX, Liu Y, Xu HL, Ren Y, Qiu YP (2008) Appl Surf Sci 254:2499–2505

    Article  ADS  Google Scholar 

  9. François S, Chakfé N, Durand B, Laroche G (2009) Acta Biomater 5:2418–2428

    Article  Google Scholar 

  10. Chlupac J, Filova E, Bacakova L (2009) Physiol Res 58:S119–S139

    Google Scholar 

  11. Esquivel CO, William Blaisdell F (1986) J Surg Res 41:1–15

    Article  Google Scholar 

  12. Chakfé N, Bizonne SC, Beaufigeau M, Urban E, Cardon A, Doillon C, Le Magnen J-F, Durand B, Kretz J-G (1999) Ann Vasc Surg 13:509–523

    Article  Google Scholar 

  13. Greenwald SE, Berry CL (2000) J Pathol 190:292–299

    Article  Google Scholar 

  14. Navaneetha Pandiyaraj K, Selvarajan V, Deshmukh RR, Bousmina M (2008) Surf Coat Technol 202:4218–4226

    Article  Google Scholar 

  15. Narushima K, Yamashita N, Fukuoka M, Inagaki N, Isono Y, Rafiqul Islam M (2007) Jpn J Appl Phys 46:4238–4245

    Article  ADS  Google Scholar 

  16. Narushima K, Yamashita N, Isono Y, Islam MR, Takeuchi M (2008) Jpn J Appl Phys 47:3603–3605

    Article  ADS  Google Scholar 

  17. Inagaki N, Narushima K, Lim SK (2003) J Appl Polym Sci 89:96–103

    Article  Google Scholar 

  18. Aflori M, Drobotă M, Ţîmpu D, Bărboiu V (2007) Amine functionality of poly(ethylene terepthalate) films surfaces induced by chemical and RF plasma treatments” 28th ICPIG, July 15–20, 2007. Prague, Czech Republic, pp 727–730.

  19. Fang Z, Lin J, Yang H, Qiu Y, Kuffel E (2009) IEEE Trans Plasma Sci 37:659–667

    Article  ADS  Google Scholar 

  20. Girardeaux C, Zammatteo N, Art M, Gillon B, Pireaux J, Caudano R (1996) Plasmas Polym 1:327–346

    Article  Google Scholar 

  21. Schröder K, Meyer-Plath A, Keller D, Besch W, Babucke G, Ohl A (2001) Contrib Plasma Phys 41:562–572

    Article  ADS  Google Scholar 

  22. López-Santos C, Yubero F, Cotrino J, González-Elipe AR (2010) Appl Mater Interf 2:980–990

    Article  Google Scholar 

  23. Grace J, Gerenser L (2003) J Dispers Sci Technol 24:305

    Article  Google Scholar 

  24. Pu FR, Williams RL, Markkula TK, Hunt JA (2002) Biomaterials 23:2411–2428

    Article  Google Scholar 

  25. Sipehia R, Martucci G, Barbarosie M, Wu C (1993) Biomat Art Cells Immobil Biotechnol 21:455–468

    Google Scholar 

  26. Ramires PA, Mirenghi L, Romano AR, Palumbo F, Nicolardi G (2000) J Biomed Mater Res 51:535–539

    Article  Google Scholar 

  27. Goddard JM, Hotchkiss JH (2007) Prog Polym Sci 32:698–725

    Article  Google Scholar 

  28. Chevallier P, Janvier R, Mantovani D, Laroche G (2005) Macromol Biosci 5:829–839

    Article  Google Scholar 

  29. Junkar I, Cvelbar U, Vesel A, Hauptman N, Mozetič M (2009) Plasma Process Polym 6:667–675

    Article  Google Scholar 

  30. Moreno MJ, Ajji A, Mohebbi-Kalhori D, Rukhlova M, Hadjizadeh A, Bureau MN (2011) J Biomed Mater Res B Appl Biomater 97:201–214

    Google Scholar 

  31. Chevallier P, Castonguay M, Turgeon S, Dubrulle N, Mantovani D, McBreen PH, Wittmann J-C, Laroche G (2001) J Phys Chem B 105:12490–12497

    Article  Google Scholar 

  32. Gauvreau V, Chevallier P, Vallieres K, Petitclerc E, Gaudreault RC, Laroche G (2004) Bioconjugate Chem 15:1146–1156

    Article  Google Scholar 

  33. Mantovani D, Castonguay M, Pageau JF, Fiset M, Laroche G (1999) Plasmas Polym 4:207–228

    Article  Google Scholar 

  34. Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  35. Balakrishnan N, Chen WWS (1999) Chen handbook of tables for order statistics from lognormal distributions with applications. Kluwer, Amsterdam

    Book  Google Scholar 

  36. Crow EL, Shimizu K (1988) Lognormal distributions: theory and applications. New York: Dekker, M.

  37. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A, Ramos E (2009) J Stat Comput Sim 79:25–38

    Article  MATH  Google Scholar 

  38. Wagner LE, Ding D (1994) Trans ASAE 37:815–821

    Google Scholar 

  39. Granqvist CG, Buhrman RA (1976) J Appl Phys 47:2200–2219

    Article  ADS  Google Scholar 

  40. Limpert E, Stahel WA, Abbt M (2001) Bioscience 51:341–352

    Article  Google Scholar 

  41. Gupta B, Hilborn J, Hollenstein C, Plummer CJG, Houriet R, Xanthopoulos N (2000) J Appl Polym Sci 78:1083–1091

    Article  Google Scholar 

  42. Regnier S, Renou A, Gillet M (1993) Mater Sci Eng B Solid B18:169–177

    Article  Google Scholar 

  43. Sugawara A, Nakamura Y, Nittono O (1990) J Cryst Growth 99:583–587

    Article  ADS  Google Scholar 

  44. Udaka M, Kawasaki K, Yamazaki T, Umemoto M, Okane I (1994) J Jpn Inst Metals 58:683–690

    Google Scholar 

  45. Rajagopal ES (1959) Proc Indian Acad Sci A 49:333–339

    Google Scholar 

  46. Shaughnessy RJ, Byeseda JJ, Sylvester ND (1983) Ind Eng Chem Prod Res Dev 22:473–478

    Article  Google Scholar 

  47. Van Dalen G (2002) J Microc 208:116–133

    Article  Google Scholar 

  48. Beysens D, Knobler CM, Schaffar H (1990) Phys Rev B 41:9814–9818

    Article  ADS  Google Scholar 

  49. Zuo JM, Li BQ (2002) Phys Rev Lett 88:255502/1–255502/4

  50. Family F, Meakin P (1988) Phys Rev Lett 61:428–431

    Article  ADS  Google Scholar 

  51. Meakin P (1990) Phys A 165:1–18

    Article  ADS  Google Scholar 

  52. Meakin P, Family F (1989) J Phys A Math Gen 22:L225–L230

    Article  ADS  Google Scholar 

  53. Proussevitch AA, Sahagian DL, Tsentalovich EP (2007) J Volcanol Geoth Res 164:95–111

    Article  ADS  Google Scholar 

  54. Fritter D, Knobler CM, Beysens D (1991) Phys Rev A 43:2858–2869

    Article  ADS  Google Scholar 

  55. Steyer A, Guenoun P, Beysens D, Knobler CM (1991) Phys Rev A 44:8271–8277

    Article  ADS  Google Scholar 

  56. Boldys J, Hrach R (1999) Superficies y Vacio 9:32–36

    Google Scholar 

  57. Hrach R (1990) Int J Electron 69:55–64

    Article  Google Scholar 

  58. Hraqch R (1992) Vacuum 43:705–708

    Article  Google Scholar 

  59. Hrach R, Simek J, Kostern M (2002) Vacuum 67:229–233

    Article  Google Scholar 

  60. Strobel M, Jones V, Lyons CS, Ulsh M, Kushner MJ, Dorai R, Branch MC (2003) Plasmas Polym 8:61–95

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science and Engineering Research Council (NSERC) and the Centre québécois sur les matériaux fonctionnels (CQMF) for their financial support. They also acknowledge the contribution of Dr. Abdellah Ajji and Mr. Jacques Dufour of NRC-IMI in the fabrication of the PET fibre mats, as well as that of Maude Larouche of Université Laval in the AFM image analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Laroche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öteyaka, M.Ö., Chevallier, P., Turgeon, S. et al. Low Pressure Radio Frequency Ammonia Plasma Surface Modification on Poly(ethylene terephthalate) Films and Fibers: Effect of the Polymer Forming Process. Plasma Chem Plasma Process 32, 17–33 (2012). https://doi.org/10.1007/s11090-011-9330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9330-3

Keywords

Navigation