Skip to main content
Log in

Radiation Defects in Aluminum Nitride under Irradiation with Low-Energy C2+ Ions

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The radiation resistance of ceramic materials based on aluminum nitride have been studied. The irradiation has been performed at a temperature of 300 K using 40-keV C2+ ions with a fluence varied from 1014 to 1015 ion/cm2. The dependences of crystallographic characteristics and strength properties on the ion fluence have been determined on the basis of X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis data. It has been found that the irradiation results in the formation of an impurity phase Al4C3 in the surface layer, which leads to an increase in the lattice parameters. This finding indicates the implantation of C2+ ions and the formation of the interstitial phase in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Nappe, J.-C., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2011, vol. 269, no. 2, p. 100.

    CAS  Google Scholar 

  2. Weber, W.J., et al., Curr. Opin. Solid State Mater. Sci., 2015, vol. 19, p. 1.

    Article  CAS  Google Scholar 

  3. Jin, K., et al., J. Appl. Phys., 2014, vol. 115, no. 4, p. 044903.

    Article  CAS  Google Scholar 

  4. Zhang, Y., et al., J. Appl. Phys., 2004, vol. 95, no. 5, p. 2866.

    Article  CAS  Google Scholar 

  5. Aidhy, D.S., Zhang, Y., and Weber, W.J., Scr. Mater., 2014, vol. 83, p. 9.

    Article  CAS  Google Scholar 

  6. Sina, Y., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2014, vol. 321, p. 8.

    CAS  Google Scholar 

  7. Jain, I.P. and Agarwal, G., Surf. Sci. Rep., 2011, vol. 66, p. 77.

    Article  CAS  Google Scholar 

  8. Ferre, F.G., et al., Corros. Sci., 2017, vol. 124, p. 80.

    Article  CAS  Google Scholar 

  9. Zinkle, S.J., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol. 191, nos. 1–4, p. 758.

    CAS  Google Scholar 

  10. Yano, T., et al., J. Nucl. Mater., 2000, vol. 283, p. 947.

    Article  Google Scholar 

  11. Obradovic, M., et al., Thin Solid Films, 2015, vol. 591, p. 164.

    Article  CAS  Google Scholar 

  12. Cao, C., et al., Ceram. Int., 2017, vol. 43, p. 9334.

    Article  CAS  Google Scholar 

  13. Zhang, Y., et al., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 38, p. 1342.

    Google Scholar 

  14. Jamison, L., et al., J. Nucl. Mater., 2014, vol. 445, nos. 1–3, p. 181.

    Article  CAS  Google Scholar 

  15. Trinkler, L., et al., Radiat. Meas., 2001, vol. 33, no. 5, p. 731.

    Article  CAS  Google Scholar 

  16. Kozlovskiy, A.L., et al., Mater. Res. Express, 2018, vol. 5, p. 065502.

    Article  CAS  Google Scholar 

  17. Kozlovskiy, A., et al., Vacuum, 2018, vol. 155, p. 412.

    Article  CAS  Google Scholar 

  18. Kozlovskiy, A., et al., Ceram. Int., 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskii.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskii, A.L., Gladkikh, T.Y. & Zdorovets, M.V. Radiation Defects in Aluminum Nitride under Irradiation with Low-Energy C2+ Ions. High Energy Chem 53, 143–146 (2019). https://doi.org/10.1134/S0018143919020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919020097

Keywords:

Navigation