Skip to main content
Log in

The investigation of various type irradiation effects on aluminum nitride ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper presents the results of a study of the effect of proton and ion radiation on structural changes in nitride ceramics, which have a high potential for using as a structural material for GenIV nuclear reactors. Proton beams with an energy of 1.5 MeV and low-energy helium (He2+) and carbon (C2+) ions with an energy of 40 keV were used, to simulate defect formation and to estimate ceramics radiation resistance. According to the data obtained, it has been established that aluminum nitride ceramics have high radiation resistance to the effects of proton radiation. While under irradiation with C2+ ions, the observed degradation of the surface layer is due to the accumulation of carbon in the structure with the subsequent formation of impurity carbide inclusions. It is established that the accumulation of slightly soluble ions of helium and carbon in the structure of the surface layer leads to an increase in the strain and distortion of crystal lattice due to introducing ions into the interstitial lattice and breaking chemical and crystalline bonds. As a result of studying the optical characteristics of irradiated samples, it was found that the decrease in absorption spectra intensity for samples irradiated with helium and carbon ions is due to a change in the interplanar distances as a result of the migration of defects along the structure with the subsequent formation of impurity inclusions. The formation of impurity phases and a high concentration of defects in the structure of ceramics leads to a sharp decrease in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: current status and future prospects. Energy Policy 61, 1503–1520 (2013)

    Article  Google Scholar 

  2. W. Hoffelner, Materials for the very high temperature reactor (VHTR): a versatile nuclear power station for combined cycle electricity and heat production. CHIMIA Int. J. Chem. 59(12), 977–982 (2005)

    Article  CAS  Google Scholar 

  3. W.R. Corwin, US Generation IV reactor integrated materials technology program. Nucl. Eng. Technol. 38(7), 591–618 (2006)

    CAS  Google Scholar 

  4. A. Alemberti et al., European lead fast reactor—ELSY. Nucl. Eng. Des. 241(9), 3470–3480 (2011)

    Article  CAS  Google Scholar 

  5. V.K. Verma, K. Katovsky, Radiation damage and development of a MC software tool. Spent nuclear fuel and accelerator-driven subcritical systems (Springer, Singapore, 2019), pp. 123–144

    Google Scholar 

  6. E.E. Bloom, S.J. Zinkle, F.W. Wiffen, Materials to deliver the promise of fusion power–progress and challenges. J. Nucl. Mater. 329, 12–19 (2004)

    Article  CAS  Google Scholar 

  7. P.P. Liu et al., Microstructure change and swelling of helium irradiated beryllium. Fusion Eng. Des. 140, 62–66 (2019)

    Article  CAS  Google Scholar 

  8. S. Cho et al., Overview of helium cooled ceramic reflector test blanket module development in Korea. Fusion Eng. Des. 88(6–8), 621–625 (2013)

    Article  CAS  Google Scholar 

  9. D.A. Addison et al., Cyclic and time-dependent crack growth mechanisms in Alloy 617 at 800 °C. Mater. Sci. Eng. 737, 205–212 (2018)

    Article  CAS  Google Scholar 

  10. B. Raj et al., Challenges in materials research for sustainable nuclear energy. Mrs Bull. 33(4), 327–337 (2008)

    Article  CAS  Google Scholar 

  11. I. Jóźwik et al., High resolution SEM characterization of nano-precipitates in ODS steels. Microsc. Res. Tech. 81(5), 502–508 (2018)

    Article  CAS  Google Scholar 

  12. C. Martín-del-Campo et al., Contributions to the neutronic analysis of a gas-cooled fast reactor. Ann. Nucl. Energy 38(6), 1406–1411 (2011)

    Article  CAS  Google Scholar 

  13. A. Prasitthipayong et al., Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors. Nucl. Mater. Energy 16, 34–45 (2018)

    Article  Google Scholar 

  14. K. Ning, L. Kathy, Water vapor thermal treatment effects on spark plasma sintered nanostructured ferritic alloy-silicon carbide systems. J. Am. Ceram. Soc. 101(6), 2208–2215 (2018)

    Article  CAS  Google Scholar 

  15. J.G. Marques, Evolution of nuclear fission reactors: third generation and beyond. Energy Convers. Manage. 51(9), 1774–1780 (2010)

    Article  CAS  Google Scholar 

  16. H. Zhang et al., The damage evolution of He irradiation on Ti3SiC2 as a function of annealing temperature. J. Eur. Ceram. Soc. 38(4), 1253–1264 (2018)

    Article  CAS  Google Scholar 

  17. J. Li et al., Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2 + crosslinking and deacetylation. Food Hydrocolloids 82, 363–369 (2018)

    Article  CAS  Google Scholar 

  18. M. Cai et al., A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11(1), 185 (2019)

    Article  CAS  Google Scholar 

  19. A. Feng et al., Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17(6), 3859–3863 (2017)

    Article  CAS  Google Scholar 

  20. G. Wu et al., Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)

    Article  CAS  Google Scholar 

  21. J. Li et al., Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. 89, 25–32 (2018)

    Article  CAS  Google Scholar 

  22. I. Tazhibayeva et al., Tritium accumulation and release from Li2TiO3 during long-term irradiation in the WWR-K reactor. J. Nucl. Mater. 417(1-3), 748–752 (2011)

    Article  CAS  Google Scholar 

  23. K. Dukenbayev et al., Study of the effect of irradiation with Fe 7 + ions on the structural properties of thin TiO2 foils. Mater. Res. Express 6(4), 046309 (2019)

    Article  CAS  Google Scholar 

  24. Y. Chikhray et al., Study of Li2TiO3 + 5 mol% TiO2 lithium ceramics after long-term neutron irradiation. J. Nucl. Mater. 386, 286–289 (2009)

    Article  CAS  Google Scholar 

  25. G. Wu et al., Investigation and optimization of Fe/ZnFe2O4 as a Wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2019)

    Article  CAS  Google Scholar 

  26. M. Dolle et al., Synthesis of nanosized zirconium carbide by a sol–gel route. J. Eur. Ceram. Soc. 27(4), 2061–2067 (2007)

    Article  CAS  Google Scholar 

  27. T. Lapauw et al., The double solid solution (Zr, Nb) 2 (Al, Sn) C MAX phase: a steric stability approach. Sci. Rep. 8(1), 12801 (2018)

    Article  CAS  Google Scholar 

  28. C. Ekberg et al., Nitride fuel for Gen IV nuclear power systems. J. Radioanal. Nucl. Chem. 318(3), 1713–1725 (2018)

    Article  CAS  Google Scholar 

  29. I.V. Iatsyuk et al., Kinetics and high-temperature oxidation mechanism of ceramic materials in the ZrB 2–SiC–MoSi 2 system. Russ. J. Non-Ferrous Metals 59(1), 76–81 (2018)

    Article  Google Scholar 

  30. G. Singh, K. Terrani, Y. Katoh, Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis. J. Nucl. Mater. 499, 126–143 (2018)

    Article  CAS  Google Scholar 

  31. S.R.G. Christopoulos et al., Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases. J. Appl. Phys. 123(2), 025103 (2018)

    Article  CAS  Google Scholar 

  32. S. Kraft et al., Ion beam mixing of ZnO/SiO 2 and Sb/Ni/Si interfaces under swift heavy ion irradiation. J. Appl. Phys. 91(3), 1129–1134 (2002)

    Article  CAS  Google Scholar 

  33. O.G. Diaz et al., On understanding the microstructure of SiC/SiC ceramic matrix composites (CMCs) after a material removal process. Mater. Sci. Eng. 743, 1–11 (2019)

    Article  CAS  Google Scholar 

  34. V. Casalegno et al., CaO-Al2O3 glass-ceramic as a joining material for SiC based components: a microstructural study of the effect of Si-ion irradiation. J. Nucl. Mater. 501, 172–180 (2018)

    Article  CAS  Google Scholar 

  35. D.S. King et al., Solidification of welded SiC–ZrB2–ZrC ceramics. J. Am. Ceram. Soc. 101(9), 4331–4339 (2018)

    Article  CAS  Google Scholar 

  36. C. Cao et al., Effects of isothermal annealing on the oxidation behavior, mechanical and thermal properties of AlN ceramics. Ceram. Int. 43(12), 9334–9342 (2017)

    Article  CAS  Google Scholar 

  37. L.-H. Hu, Y.-K. Wang, S.-C. Wang, Aluminum nitride surface functionalized by polymer derived silicon oxycarbonitride ceramic for anti-hydrolysis. J. Alloy. Compd. 772, 828–833 (2019)

    Article  CAS  Google Scholar 

  38. U. Betke et al., Manufacturing of reticulated open-cellular aluminum nitride ceramic foams from aqueous AlN suspensions. Adv. Eng. Mater. 19(3), 1600660 (2017)

    Article  CAS  Google Scholar 

  39. S.M. Ognjanović, M. Winterer, Optimizing particle characteristics of nanocrystalline aluminum nitride. Powder Technol. 326, 488–497 (2018)

    Article  CAS  Google Scholar 

  40. B. Reinhardt, J. Daw, B.R. Tittmann, Irradiation testing of piezoelectric (aluminum nitride, zinc oxide, and bismuth titanate) and magnetostrictive sensors (remendur and galfenol). IEEE Trans. Nucl. Sci. 65(1), 533–538 (2018)

    Article  CAS  Google Scholar 

  41. W. Mengkuo et al., In-pile assemblies for investigation of tritium release from Li2TiO3 lithium ceramic. Fusion Sci. Technol. 47(4), 1084–1088 (2005)

    Article  Google Scholar 

  42. K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J. Nucl. Mater. 383(1-2), 189–195 (2008)

    Article  CAS  Google Scholar 

  43. G. Remnev et al., Effect of intense electron and ion irradiation on optical absorption of boron carbide thin films. Radiat Effects Defects Solids 173(11-12), 1075–1082 (2018)

    Article  CAS  Google Scholar 

  44. I. Tazhibayeva et al., Interaction of tritium and helium with lead–lithium eutectic under reactor irradiation. Fusion Eng. Des. 89(7-8), 1486–1490 (2014)

    Article  CAS  Google Scholar 

  45. J. Xi et al., Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation. J. Appl. Phys. 123(4), 045904 (2018)

    Article  CAS  Google Scholar 

  46. D. Sun et al., Interaction between helium and intrinsic point defects in 3C-SiC single crystal. J. Appl. Phys. 121(22), 225111 (2017)

    Article  CAS  Google Scholar 

  47. B. Su et al., Damage development of sintered SiC ceramics with the depth variation in Ar ion-irradiation at 600 C. J. Eur. Ceram. Soc. 38(5), 2289–2296 (2018)

    Article  CAS  Google Scholar 

  48. A.O. Sadvakassova et al., Research of reactor radiation influence upon processes of hydrogen isotopes interaction with materials of the fusion facility. Fusion Sci. Technol. 60(1T), 9–15 (2011)

    Article  CAS  Google Scholar 

  49. T. Yang et al., Comparison of irradiation tolerance of two MAX phases-Ti4AlN3 and Ti2AlN. J. Nucl. Mater. 513, 120–128 (2019)

    Article  CAS  Google Scholar 

  50. T. Yao et al., Radiation-induced amorphization of Langasite La3Ga5SiO14. J. Nucl. Mater. 500, 50–55 (2018)

    Article  CAS  Google Scholar 

  51. A. Kozlovskiy et al., Investigation of the influence of irradiation with Fe + 7 ions on structural properties of AlN ceramics. Mater. Res. Express 5(6), 065502 (2018)

    Article  CAS  Google Scholar 

  52. A. Kozlovskiy et al., Effect of swift heavy ions irradiation on AlN ceramics properties. Ceram. Int. 44(16), 19787–19793 (2018)

    Article  CAS  Google Scholar 

  53. D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21(2), 86–91 (1988)

    Article  CAS  Google Scholar 

  54. K. Venkateswarlu, A.C. Bose, N. Rameshbabu, X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Phys. B 405(20), 4256–4261 (2010)

    Article  CAS  Google Scholar 

  55. A.K. Zak et al., X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  CAS  Google Scholar 

  56. Y.S. Umansky et al., Crystallography, X-ray analysis and electron microscopy (Metallurgiya, Moscow, 1982). (in Russian)

    Google Scholar 

  57. M. Milosavljević et al., A comparison of Ar ion implantation and swift heavy Xe ion irradiation effects on immiscible AlN/TiN multilayered nanostructures. Mater. Chem. Phys. 133(2-3), 884–892 (2012)

    Article  CAS  Google Scholar 

  58. A. Kozlovskiy et al., Dynamics of changes in structural properties of AlN ceramics after Xe + 22 ion irradiation. Vacuum 155, 412–422 (2018)

    Article  CAS  Google Scholar 

  59. K. Dukenbayev et al., Investigation of radiation resistance of AlN ceramics. Vacuum 159, 144–151 (2019)

    Article  CAS  Google Scholar 

  60. G. Szenes, Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 336(1), 81–89 (2005)

    Article  CAS  Google Scholar 

  61. T. Gladkikh et al., Changes in optical and structural properties of AlN after irradiation with C2 + ions of 40 keV. Vacuum 161, 103–110 (2019)

    Article  CAS  Google Scholar 

  62. L. Trinkler et al., Thermally and optically stimulated luminescence of AlN-Y2O3 ceramics after ionising irradiation. Radiat. Prot. Dosimetry. 84(1-4), 207–210 (1999)

    Article  CAS  Google Scholar 

  63. G. Szenes, Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 336(1), 81–89 (2005)

    Article  CAS  Google Scholar 

  64. J.-C. Nappé et al., Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide. J. Eur. Ceram. Soc. 31(8), 1503–1511 (2011)

    Article  CAS  Google Scholar 

  65. D.J. Tallman et al., Effect of neutron irradiation on select MAX phases. Acta Mater. 85, 132–143 (2015)

    Article  CAS  Google Scholar 

  66. E.G. Njoroge et al., Surface and interface modification of Zr/SiC interface by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 354, 249–254 (2015)

    Article  CAS  Google Scholar 

  67. A. Kozlovskiy, Influence of irradiation temperature on properties change of AlN ceramics. Vacuum 158, 93–100 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Kozlovskiy or M. Zdorovets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional ailiations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukenbayev, K., Kozlovskiy, A., Alyamova, Z.A. et al. The investigation of various type irradiation effects on aluminum nitride ceramic. J Mater Sci: Mater Electron 30, 8777–8787 (2019). https://doi.org/10.1007/s10854-019-01202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01202-6

Navigation