Skip to main content
Log in

Forecast of Modulation of Cosmic Rays with Rigidity of 10 GV in the 25th Solar Activity Cycle

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on a forecast of solar activity parameters and the model developed by the authors for modulation of Galactic cosmic rays, we forecasted cosmic ray variations in the 25th solar activity cycle. The cosmic ray flux forecast is based on correlation with the number of sunspots (single-parameter model) or with a set of solar (mainly magnetic) parameters (multiparameter model). The forecast for the number of sunspots was taken from published data; the forecast for other solar parameters was done in the study. It is shown that variations in cosmic rays over three years of the current 25th cycle, in general, do not contradict the forecasts and indicate that the 25th solar activity cycle is expected to be slightly more active compared to the 24th.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bajaj, A., Time Series Prediction: How is it different from other machine learning?, 2023. https://neptune.ai/ blog/time-series-prediction-vs-machine-learning.

  2. Belov, A.V. and Gushchina, R.T., Index of the long-term influence of sporadic solar activity on cosmic ray modulation, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 1, pp. 1–8. https://doi.org/10.1134/S0016793218010036.

  3. Belov, A.V., Gushchina, R.T., Obridko, V.N., Shel’ting, B.D., and Yanke, V.G., Prediction and epignosis of long-period variations in cosmic rays on the basis of different solar activity indices, Bull. Russ. Acad. Sci.: Phys., 2005, vol. 69, no. 6, pp. 890–892.

    CAS  Google Scholar 

  4. Belov, A.V., Gushchina, R.T., and Yanke, V.G., Cosmic ray variations in solar activity cycles 23–24 according to data from the global network of cosmic ray stations, in Tr. konf. “Astronomiya-2018” (Proceedings of the Conference “Astronomy-2018”), Moscow: GAISh MGU, 2018, vol. 2, pp. 27–30. https://doi.org/10.31361/eaas.2018-2.006.

  5. Cliver, E.W. and von Steiger, R., Minimal magnetic states of the sun and the solar wind: Implications for the origin of the slow solar wind, Space Sci. Rev., 2017, vol. 210, pp. 227–247. https://doi.org/10.1007/s11214-015-0224-1

    Article  Google Scholar 

  6. Cliver, E.W. and Ling, A.G., The floor in the solar wind magnetic field revisited, Sol. Phys., 2011, vol. 274, pp. 285–301. https://doi.org/10.1007/s11207-010-9657-6

    Article  CAS  Google Scholar 

  7. Dorman, L.I., Variatsii kosmicheskikh luchei i issledovanie kosmosa (Cosmic Ray Variations and Space Research), Moscow: RAS, 1963.

  8. Emelin, A. http://www.mathprofi.ru/. Accessed March 12, 2024.

  9. Gushchina, R.T., Belov, A.V., and Yanke, V.G., Spectrum of long-term cosmic ray variations during the sunspot minimum in 2009, Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 5, pp. 513–516. https://doi.org/10.3103/S1062873813050249

    Article  CAS  Google Scholar 

  10. Gushchina, R.T., Belov, A.V., Tlatov A.G., and Yanke, V.G., Coronal holes in the long-term modulation of cosmic rays, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 3, pp. 257–263. https://doi.org/10.1134/S0016793216030063

  11. Hathaway, D.H., The solar cycle, Living Rev. Sol. Phys., 2015, vol. 12, p. 4. https://doi.org/10.1007/lrsp-2015-4

    Article  Google Scholar 

  12. Hyndman, R.J. and Athanasopoulos, G., Forecasting: Principles and Practice, Melbourne, Australia: Monash University, 2014. https://otexts.com/fpp2.

    Google Scholar 

  13. Ishkov, V.I., Current cycle 25 of solar activity: The initial stage, in Fizika plazmy v solnechnoi sisteme: Semnadtsataya ezhegodnaya konferentsiya (Physics of Plasma in the Solar System: Proceedings of the Seventeenth Ann-ual Conference), Moscow: IKI RAN, 2022. https://plasma2022.cosmos.ru/docs/2022/Plasma-2022-AbstractBook_v4.pdf.

  14. Ishkov, V.N., Outcomes and lessons from cycle 24—the first cycle in the second epoch of low solar activity, Astron. Rep., 2022, vol. 66, no. 1, pp. 48–63. https://doi.org/10.1134/S1063772922020056

    Article  Google Scholar 

  15. Koldanov, A.P. and Koldanov, P.A., Teoriya veroyatnostei i matematicheskaya statistika (Probability Theory and Mathematical Statistics), Moscow: VShE, 2023. https://doi.org/10.17323/978-5-7598-2544-9

  16. Krainev, M.B., Gvozdevsky, B.B., Kalinin, M.S., Aslam, O.P.M., Ngobeni, M.D., and Potgieter, M.S., On the solar poloidal magnetic field as one of the main factors for maximum GCR intensity for the last five sunspot minima, in Proc. 37th ICRC, Berlin, 2021, p. PoS(ICRC2021)1322.

  17. Krymskii, G.F., Differential mechanism of diurnal variation of cosmic rays, Geomagn. Aeron., 1964, vol. 4, no. 6, pp. 977–986.

    Google Scholar 

  18. Krymskii, G.F., Kuz’min, A.I., and Krivoshapkin, P.A., Kosmicheskie luchi i solnechnyi veter (Cosmic Rays and the Solar Wind), Novosibirsk: Nauka, 1981.

  19. Krymskii, G.F., Krivoshapkin, P.A., Gerasimova, S.K., Grigor’ev, V.G., and Mamrukova, V.P., Cosmic-ray modulation by the heliospheric neutral sheet, Geomagn. Aeron. (Engl. Transl.), 2001, vol. 41, no. 4, pp. 426–431.

  20. Labonville, F., Charbonneau, P., and Lemerle, A., A dynamo-based forecast of solar cycle 25, Sol. Phys., 2019, vol. 294, p. 82. https://doi.org/10.1007/s11207-019-1480-0

    Article  Google Scholar 

  21. Li, F., Kong, D., Xie, J., Xiang, N., and Xu, J., Solar cycle characteristics and their application in the prediction of cycle 25, J. Atmos. Sol.-Terr. Phys., 2018, vol. 181, pp. 110–115. https://doi.org/10.1016/j.jastp.2018.10.014

    Article  Google Scholar 

  22. Lyubimtsev, O.V. and Lyubimtseva, O.L., Lineinye regressionnye modeli v ekonometrike (Linear Regression Models in Econometrics), Nizhny Novgorod: NNGASU, 2016. https://bibl.nngasu.ru/electronicresources/uch-metod/economic_statistics/859984.pdf.

  23. Martucci, M., Munini, R., Boezio, M., et al., Proton fluxes measured by the PAMELA experiment from the minimum to the maximum solar activity for solar cycle 24, Astrophys. J. Lett., 2018, vol. 854, no. 1, p. L2. https://doi.org/10.3847/2041-8213/aaa9b2

    Article  CAS  Google Scholar 

  24. Miao, J., Wang, X., Ren, T., and Li, Z., Prediction verification of solar cycles 18–24 and a preliminary prediction of the maximum amplitude of solar cycle 25 based on the Precursor Method, Res. Astron. Astrophys., 2020, vol. 20, no. 1, p. 004. https://doi.org/10.1088/1674-4527/20/1/4

  25. Nandy, D., Progress in solar cycle predictions: sunspot cycles 24–25 in perspective, Sol. Phys., 2021, vol. 296, p. 54. https://doi.org/10.1007/s11207-021-01797-2

    Article  Google Scholar 

  26. NASA/NOAA, Space Weather Prediction Center, Predicted sunspot number and radio flux, 2019. https:// www.spaceweatherlive.com/ru/solnechnaya-aktivnost/ solnechnyy-cikl.html.

  27. Obridko, V.N. and Shelting, B.D., Structure of the heliospheric current sheet as considered over a long time interval (1915–1996), Sol. Phys., 1999, vol. 184, no. 1, pp. 187–200. https://doi.org/10.1023/A:1005041329043

    Article  Google Scholar 

  28. Parker, E.N., Cosmic ray modulation by solar wind, Phys. Rev., 1958, vol. 110, p. 1445. https://doi.org/10.1103/PhysRev.110.1445

    Article  Google Scholar 

  29. Parker, E.N., Interplanetary Dynamical Processes, New York: Inter Science Publishers, 1963.

    Google Scholar 

  30. Parker, E.N., The passage of energetic charged particles through interplanetary space, Planet. Space Sci., 1965, vol. 13, pp. 9–49. https://doi.org/10.1016/0032-0633(65)90131-5

    Article  Google Scholar 

  31. Pesnell, W.D., Solar cycle predictions (invited review), Sol. Phys., 2012, vol. 281, pp. 507–532. https://doi.org/10.1007/s11207-012-9997-5

    Article  Google Scholar 

  32. Pesnell, W.D. and Schatten, K.H., An early prediction of the amplitude of solar cycle 25, Sol. Phys., 2018, vol. 293, p. 112. https://doi.org/10.1007/s11207-018-1330-5

    Article  Google Scholar 

  33. Petrovay, K., Solar cycle prediction, Living Rev. Sol. Phys., 2020, vol. 17, p. 2. https://doi.org/10.1007/s41116-020-0022-z

    Article  Google Scholar 

  34. Rankin, J.S., Bindi, V., Bykov, A.M., Cummings,·A.C., Torre, S.D., Florinski, V., Heber, B., Potgieter, M.S., Stone, E.C., and Zhang, M., Galactic cosmic rays throughout the heliosphere and in the very local interstellar medium, Space Sci. Rev., 2022, vol. 218, p. 42. https://doi.org/10.1007/s11214-022-00912-4

    Article  Google Scholar 

  35. Sarp, V., Kilcik, A., Yurchyshyn, V., Rozelot, J., and Ozguc, A., Prediction of solar cycle 25: A non-linear approach, Mon. Not. R. Astron. Soc., 2018, vol. 481, no. 3, pp. 2981–2985. https://doi.org/10.1093/mnras/sty2470

    Article  Google Scholar 

  36. Shi, X., Fu, H., Huang, Z., et al., The solar cycle dependence of in situ properties of two types of interplanetary CMEs during 1999–2020, Astrophys. J., 2022, vol. 940, no. 2, p. 103. https://doi.org/10.3847/1538-4357/ac9b20

    Article  Google Scholar 

  37. Yanke, V G., Belov, A.V., and Gushchina, R.T., Long-term modulation of cosmic rays in solar cycles 23–24, Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, no. 9, pp. 1045–1048. https://doi.org/10.3103/S1062873821090355

    Article  CAS  Google Scholar 

  38. Yanke, V.G., Belov, A.V., and Gushchina, R.T., Variations of cosmic rays with various energies in the minima of solar activity cycles, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 4, pp. 347–355. https://doi.org/10.1134/S001679322204017X

  39. Yanke, V.G., Belov, A.V., Gushchina, R.T., Kobelev, P.G., and Trefilova, L.A., On residual modulation of galactic cosmic rays in the heliosphere, Cosmic Res., 2023, vol. 61, no. 1, pp. 38–45. https://doi.org/10.1134/S0010952522060107

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the teams of the World Network of Cosmic Ray Stations (http://cr0.izmiran.ru/ThankYou/Our_Acknowledgment.pdf) and project NMDB (www.nmdb.eu). The study was carried out within the framework of the Russian National Ground-Based Network of Cosmic Ray Stations (SCR Network) (https://ckp-rf.ru/catalog/usu/433536).

Funding

The study was supported from the budget of the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Yanke or P. G. Kobelev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanke, V.G., Belov, A.V., Gushchina, R.T. et al. Forecast of Modulation of Cosmic Rays with Rigidity of 10 GV in the 25th Solar Activity Cycle. Geomagn. Aeron. 64, 201–210 (2024). https://doi.org/10.1134/S0016793223601072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223601072

Navigation