Skip to main content
Log in

Evaluation of the Standard Thermodynamic Functions of Hydrate Sulfates of Divalent Metals (Ca, Mn, Cd, Fe, Zn, Cu, Mg, Ni, Co, and Be)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Based on the known thermodynamic characteristics, changes in the standard Gibbs energies ΔƒG° and enthalpies ΔƒH° of formation, standard values of entropies S° at a temperature of 298.15 K of hydrate sulfates of divalent metals (Ca, Mn, Cd, Fe, Zn, Cu, Mg, Ni, Co, and Be), equations of linear dependences of the values of the thermodynamic functions of the compounds on the content of crystallization water were obtained using the least squares method. Comparison of the estimates with the multidimensional correlation analysis method shows a higher accuracy of calculations with the considered approach. A correlation has been revealed between the thermodynamic properties of the hydrates and the crystallographic radii of the cations. The derived equations are used to calculate unknown properties of some hydrates. Comparison of the calculations of the thermodynamic equilibria of the MeSO4–H2O systems by the Selector PC showed a good agreement with the experimental diagrams of the solubility of salts in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. V. Belogub, E. P. Shcherbakova, and N. K. Nikandrova, Sulfates of the Urals: Distribution, Crystal Chemistry, and Genesis (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  2. S. Billon and P. Vieillard, “Prediction of enthalpies of formation of hydrous sulfates,” Am. Mineral. 100, 615–627 (2015).

    Article  Google Scholar 

  3. A. G. Bulakh and K. G. Bulakh, Physicochemical Properties of Minerals and Components of Hydrothermal Solution (Nedra, Leningrad, 1978) [in Russian].

    Google Scholar 

  4. V. A. Bychinskii, O. N. Koroleva, A. V. Oshchepkova, and M. V. Shtenberg, “A method for determination of thermodynamic properties of matter for study of natural and technological processes by methods of physicochemical modeling,” Izv. Tomsk. Politekhn. Univ., Inzh. Geores. 329 (5), 48–56 (2018).

    Google Scholar 

  5. M. V. Charykova, V. G. Krivovichev, and V. Depmaier, “Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. I. Thermodynamic constants under standard conditions,” Zap. Ross. Mineral. O-va 138 (6), 105–117 (2009).

    Google Scholar 

  6. M. V. Charykova, V. G. Krivovichev, and V. Depmaier, “Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. II. M1, M2/SO4 2––H2O system (M1, M2 = Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+) at 25°C,” Zap. Ross. Mineral. O-va 139 (1), 3–18 (2010).

    Google Scholar 

  7. F. Chen, R. C. Ewing, and S. B. Clark, “The Gibbs free energies and enthalpies of formation of U6+ phases: An empirical method of prediction,” Am. Mineral. 84, 650–664 (1999).

    Article  Google Scholar 

  8. I.-M. Chou and R. R. II. Seal, “Magnesium and calcium sulfate stabilities and the water budget of Mars,” J. Geophys. Res.112 (E11004), 10 (2007).

    Article  Google Scholar 

  9. I.-M. Chou, R. R. II Seal, and A. Wang, “The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences,” J. Asian Earth Sci. 62, 734–758 (2012).

    Article  Google Scholar 

  10. K. V. Chudnenko, Thermodynamic Modeling in Geochemistry: Theory, Algorithm, Software, and Application (GEO, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  11. W. P. Cox, E. W. Hornung, and W. F. Giauque, “The spontaneous transformation from macrocrystalline to microcrystalline phases at low temperatures. The heat capacity of MgSO4 · 6H2O,” J. Am. Chem. Soc. 77, 3935–3938 (1955).

    Article  Google Scholar 

  12. M. D’Orazio, D. Mauro, M. Valerio, and C. Biagioni, “Secondary sulfates from the Monte Arsiccio Mine (Apuan Alps, Tuscany, Italy): trace–element budget and role in the formation of acid mine drainage,” Minerals 11, 206 (2021).

    Article  Google Scholar 

  13. C. W. DeKock, “Thermodynamic properties of selected transition metal sulphates and their hydrates,” U.S. Bur. Mines Inf. Circ., No. 8910, 45 (1982).

  14. C. W. DeKock, “Thermodynamic properties of selected metal sulfates and their hydrates,” U.S. Bur. Mines Inf. Circ., No. 9081, 59 (1986).

  15. M. Ding, Y. Zhang, and Y. Ren, “Solid–Liquid Phase Equilibrium of MnSO4–MgSO4–H2O and (NH4)2SO4–MnSO4–MgSO4–H2O Systems at T = 303.15 K,” J. Chem. Eng. 66 (1), (2021).

  16. S. N. Elokhina and B. N. Ryzhenko, “Secondary mineral-forming processes in natural-anthropogenic hydrogeological systems at sulfide deposits. Simulation of the origin of the phase (Fe,Mg)SO4 · 7H2O in the course of sulfide oxidation at the Degtyarka copper sulfide deposit,” Geochem. Int. 52 (2), 162–177 (2014).

    Article  Google Scholar 

  17. O. V. Eremin, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Chita, 2004).

  18. O. V. Eremin and G. A. Yurgenson, “Thermodynamic oxidation models of sulfide ores from the cryomineral formation zone as a task of linear programming (Udokan deposit),” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., No. 6, 153–156 (2001).

  19. O. V. Eremin, O. S. Rusal, V. A. Bychinskii, K. V. Chudnenko, S. V. Fomichev, and V. A. Krenev, “Calculation of the standard thermodynamic potentials of aluminum sulfates
and basic aluminum sulfates,” 60 (8), 950–957 (2015).

  20. A. D. Fortes, F. Browning, and I. G. Wood, “Cation substitution in synthetic meridianiite (MgSO4·11H2O) I: X-ray powder diffraction analysis of quenched polycrystalline aggregates,” Phys. Chem. Minerals. 39, 419–441 (2012).

    Article  Google Scholar 

  21. A. D. Fortes, K. S. Knight, and I. G Wood, “Structure, thermal expansion and incompressibility of MgSO4 · 9H2O, its relationship to meridianiite (MgSO4 · 11H2O) and possible natural occurrences,” Acta Crystallogr., Sect. B: Struct. Sci. 73(1), 47–64 (2017).

    Article  Google Scholar 

  22. A. D. Fortes, K. S. Knight, A. S. Gibbs, and I. G. Wood, “Crystal structures of NiSO4 · 9H2O and Ni-SO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (MgxNi1 – x)SO4 · 9H2O,” Phys. Chem. Miner. 45 (8), 695–712 (2018).

    Article  Google Scholar 

  23. H. Gamsjäger, J. Bugajski, T. Gajda, R. Lemire, W. Preis, F. J. Mompean, and M. Illemassène, Chemical Thermodynamics. Vol. 6. Nuclear Energy Agency Data Bank, Organization for Economic Co-operation and Development (North Holland Elsevier Science Publishers B.V., Amsterdam, 2005).

  24. P. Garofalo, A. Audetat, D. Gunther, C. A. Heinrich, and J. Ridley, “Estimation and testing of standard molar thermodynamic properties of tourmaline endmembers using data of natural samples,” Am. Mineral. 85, 78–88 (2000).

    Article  Google Scholar 

  25. J. Gebhardt and A. M. Rappe, “Big data approach for effective ionic radii,” Comp. Phys. Commun. 237, 238–243 (2019).

    Article  Google Scholar 

  26. V. P. Glushko, V. A. Medvedev, G. A. Bergman, L. V. Gurvich, V. S. Yungman, V. I. Alekseev, V. P. Kolesov, V. P. Vasilev, L. A. Reznitskii, I. L. Khodakovskii, A. F. Vorobev, N. L. Smirnova, G. L. Galchenko, B. P. Biryukov, and N. T. Ioffe, Thermal Constants of Matters. A Textbook (VINITI, 1979), Vol. 9 [in Russian].

    Google Scholar 

  27. K. -D. Grevel and J. Majzlan, “Internally consistent thermodynamic data for magnesium sulphate hydrates,” Geochim. Cosmochim. Acta 73, 6805–6815 (2009).

    Article  Google Scholar 

  28. K. -D. Grevel and J. Majzlan, “Internally consistent thermodynamic data for metal divalent sulphate hydrates,” Chem. Geol. 286, 301–306 (2011).

    Google Scholar 

  29. K.-D. Grevel, J. Majzlan, A. Benisek, E. Dachs, M. Steiger, A. D. Fortes, and B. Marler, “Experimentally determined standard properties for synthetic MgSO4 ∙ 4H2O (starkeyite) and MgSO4 ∙ 3H2O: a revised internally consistent thermodynamic dataset for magnesium sulfate hydrates,” Astrobiology 12, 1042–1054 (2012).

    Article  Google Scholar 

  30. V. M. Gurevich, O. L. Kuskov, K. S. Gavrichev, and A. V. Tyurin, “Heat capacity and thermodynamic functions of epsomite MgSO4 7H2O at 0–303 K,” Geochem. Int. 45 (2), 206–209 (2007).

    Article  Google Scholar 

  31. C. E. Harvie, N. M. Moller, and J. H. Weare, “The prediction of mineral solubilities in natural waters: Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25°C,” Geochim. Cosmochim. Acta 48, 723–751 (1984).

    Article  Google Scholar 

  32. R. M. Hazen and J. H. Ausubel, “On the nature and significance of rarity in mineralogy,” Am. Mineral. 101, 1245–1251 (2016).

    Article  Google Scholar 

  33. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb,” Amer. J. Sci. 281, 1249–1516 (1981).

    Article  Google Scholar 

  34. B. S. Hemingway and R. A. Robie, “Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates for the thermochemical properties of zeolitic water at low temperature,” Am. Mineral. 69, 692–700 (1984).

    Google Scholar 

  35. B. S. Hemingway, R. R. Seal, and I.-M. Chou, “Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals,” Open-File Rept., No. 02–161, (2002).

  36. J. L. Jambor, D. K. Nordstrom, and C. N. Alpers, “Metal-sulfate salts from sulfide mineral oxidation. Sulfate minerals,” Rev. Mineral. Geochem. 40, 303–350 (2000).

    Article  Google Scholar 

  37. H. D. B. Jenkins, “Expanding thermodynamic databases using the thermodynamic difference rule (TDR). Exemplified by an application to retrieve new thermodynamic data for thorium compounds,” J. Chem. Thermodynam. 144, 106052 (2020).

    Article  Google Scholar 

  38. H. D. B. Jenkins and C. E. Housecroft, “The thermodynamics of uranium salts and their hydrates—Estimating thermodynamic properties for nuclear and other actinoid materials using the Thermodynamic Difference Rule (TDR),” J. Chem. Thermodynam. 114, 116–121 (2017).

    Article  Google Scholar 

  39. I. K. Karpov and S. A. Kashik, “Computer calculation of standard isobaric–isothermal potentials by regression based on crystal chemical classification,” Geokhimiya, No. 7, 806–814 (1968).

    Google Scholar 

  40. I. K. Karpov, S. A. Kashik, and V. D. Pampura, Constants of Matters for Thermodynamic Calculations in Geochemistry and Petrology (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  41. A. N. Kirgintsev, L. N. Trushnikova, and V. G Lavrentiev, Solubility of Inorganic Matters in Water (Khimiya, Leningnrad, 1972) [in Russian].

  42. T. Kitajima, K. Fukushi, M. Yoda, Y. Takeichi, and Y. Takahashi, “Simple, reproducible synthesis of pure monohydrocalcite with low-mg content,” Minerals 10, 346 (2021).

    Article  Google Scholar 

  43. H. C. Ko and G. E. Daut, “Enthalpies of formation of a- and b–magnesium sulfate and magnesium sulfate monohydrate,” U.S. Bur. Mines Rpt. Invest., no. 8409, 8 (1979).

  44. P. M. Kobylin and P. A. Taskinen, “Thermodynamic modelling of aqueous Mn(II) sulfate solutions,” Cal-phad. 38, 146–154 (2012).

    Google Scholar 

  45. Iglesia A. La, “Estimating the thermodynamic properties of phosphate minerals at high and low temperature from the sum of constituent units,” Estud. Geol. 65, 109–119 (2009).

    Article  Google Scholar 

  46. R. J. Lemire, U. Berner, C. Musikas, et al. Chemical Thermodynamics of Iron (OECD, 2013).

    Google Scholar 

  47. R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Matters, A Reference Book, 2nd Ed. (Drofa, 2006) [in Russian].

    Google Scholar 

  48. Q. Lin, G. Gu, H. Wang, C. Wang, Y. Liu, R. Zhu, and J. Fu, “Separation of manganese from calcium and magnesium in sulfate solutions via carbonate precipitation,” Trans. Nonferrous Met. Soc. China 26, 1118–1125 (2016).

    Article  Google Scholar 

  49. Y. Ma, M. Svärd, X. Xiao, S. A. Sahadevan, J. Gardner, R. T. Olsson, and K. Forsberg, “Eutectic freeze crystallization for recovery of NiSO4 and CoSO4 hydrates from sulfate solutions,” Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2021.120308

  50. L. Mercury, Ph. Vieillard, and Y. Tardy, “Thermodynamics of ice polymorphs and “ice-like” water in hydrates and hydroxides,” Appl. Geochem. 16, 161–181 (2001).

    Article  Google Scholar 

  51. A. T. M. G. Mostafa, J. M. Eakman, and S. L. Yarbo, “Prediction of standard heats and Gibbs Free Energies of formation of solid inorganic salts from group contributions,” Ind. Eng. Chem. Res. 34, 4577–4582 (1995).

    Article  Google Scholar 

  52. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, A Reference Book of Thermodynamic Values for Geologists (Atomizdat, Moscow, 1971).

    Google Scholar 

  53. R. T. Pabalan and K. S. Pitzer, “Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na–K–Mg–Cl–SO4–OH–H2O,” Geochim. Cosmochim. Acta 51, 2429–2443 (1987).

    Article  Google Scholar 

  54. R. C. Peterson, W. Nelson, B. Madu, and H. F. Shurvell, “Meridianiite (MgSO4 · 11H2O): a new mineral species observed on Earth and predicted to exist on Mars,” Am. Mineral. 92 (10), 1756–1759 (2007).

    Article  Google Scholar 

  55. K. S. Pfitzner, A. J. Harford, T. G. Whiteside, and R. E. Bartolo, “Mapping magnesium sulfate salts from saline mine discharge with airborne hyperspectral data,” Sci. Total Environ. 640–641, 1259–1271 (2018).

    Article  Google Scholar 

  56. V. A. Ryabin, M. A. Ostroumov, and T. F. Svit, Thermodynamic Properties of Matters. A Reference Book (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  57. Yu. I. Sidorov, Doctoral Dissertation in Geology and Mineralogy (Moscow, 1999).

  58. U. D. Veryatin, V. P. Mashirev, N. G. Ryabtsev, V. I. Tarasov, B. D. Rogozhin, and I. V. Korobov, Thermodynamic Properties of Inorganic Matters (Atomizdat, Moscow, 1965).

    Google Scholar 

  59. T. Vielma, “Thermodynamic model for CoSO4(aq) and the related solid hydrates in the temperature range from 270 to 374 K and at atmospheric pressure,” Calphad 72, 102230 (2021).

    Article  Google Scholar 

  60. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, “The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units,” J. Phys. Chem. Ref. Data 11 (2), 371 (1982).

    Google Scholar 

  61. Y. Wang, L. Zeng, G. Zhang, W. Guan, Z. Sun, D. Zhang, and J. Qing, “A novel process on separation of manganese from calcium and magnesium using synergistic solvent extraction system,” Hydrometallurgy 185, 55–60 (2019).

    Article  Google Scholar 

  62. T. J. Wolery, EQ3NR, a Computer Program for Geochemical Aqueous Speciation Solubility Calculations: User’s Guide and Documentation (Lawrence Livermore Nat. Lab., Livermore, 1988).

    Google Scholar 

  63. T. L. Wood and R. M. Garrels, Thermodynamic Values at Low Temperature for Natural Inorganic Materials (Oxford University Press, 1987).

    Google Scholar 

  64. T. Xiao, W. Mu, S. Shi, X. Xin, X. Xu, H. Cheng, S. Luo, and Y. Zhai, “Simultaneous extraction of nickel, copper, and cobalt from low-grade nickel matte by oxidative sulfation roasting–water leaching process,” Minerals Eng. 174, 107254 (2021).

    Article  Google Scholar 

  65. L. K. Yakhontova and V. P. Zvereva, Minerals of Supergene Zone (Dalnauka, Vladivostok, 2007) [in Russian].

    Google Scholar 

  66. H. Yokokawa, “Tables of thermodynamic properties of inorganic compounds,” J. Nat. Chem. Lab. Industry 83, 27–118 (1988).

    Google Scholar 

  67. M. Zhang, P. Wu, Y. Li, W. Li, and H. Zhou, “Phase equilibria and phase diagrams of the Mn2+, Mg2+, \({\text{NH}}_{4}^{ + }{\text{//SO}}_{4}^{{2 - }}\)–H2O System at 298.15, 323.15, and 373.15 K,” J. Chem. Eng. Data 65 (6), 3091–3102 (2021).

    Article  Google Scholar 

  68. W. Zhang and C. Y. Cheng, “Manganese metallurgy review. Part II: Manganese separation and recovery from solution,” Hydrometallurgy 89, 160–177 (2007).

    Article  Google Scholar 

Download references

Funding

This study was supported by Russian Science Foundation, project 22-27-00281.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Rusal or O. V. Eremin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusal, O.S., Eremin, O.V. Evaluation of the Standard Thermodynamic Functions of Hydrate Sulfates of Divalent Metals (Ca, Mn, Cd, Fe, Zn, Cu, Mg, Ni, Co, and Be). Geochem. Int. 60, 981–994 (2022). https://doi.org/10.1134/S001670292210007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292210007X

Keywords:

Navigation