Skip to main content
Log in

The effect of recrystallization of aqueous solutions of metal sulfates on the acid–base balance

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comparative study of pH values in recrystallized aqueous solutions of manganese, copper, and iron sulfates and the calculated values for the pH levels of similar solutions obtained directly from solid salts has been performed for the first time. The trend for the positive deviation of the pHrec values from the pHcalc values has been established. The positive deviation was the strongest in the case of iron sulfate solutions. The sample of the recrystallized aqueous solution (recrystallized water) consisted of water obtained by melting of the initial aqueous solution after freezing of 60% of the solution (by volume). Four hypotheses were proposed to explain the positive deviation of pHrec from pHcalc: (1) low СО2 concentration; (2) more efficient adsorption of anions on the freezing front compared to that of cations; (3) mechanochemical and radiation chemical processes that occur upon the melting of ice; and (4) Fe2+-catalyzed decomposition of hydrogen peroxide formed in the recrystallized solution. Analysis of the putative causes showed that the fourth hypothesis provided the most adequate explanation of the difference between pHrec and pHcalc. The formation of hydrogen peroxide in recrystallized water is proposed to occur due to the recombination of OH radicals formed during the radiation chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, London, 1969).

    Google Scholar 

  2. N. G. Esipova, N. S. Andreeva, and T. V. Gatovskaya, Biofizika 3, 529 (1958).

    Google Scholar 

  3. P. L. Privalov, Biofizika 8, 308 (1963).

    Google Scholar 

  4. I. A. Verzhbinskaya and A. I. Sidorova, Biofizika 9, 349 (1964).

    Google Scholar 

  5. P. L. Privalov, K. A. Kafiani, and D. R. Monaselidze, Biofizika 10, 393 (1965).

    Google Scholar 

  6. V. V. Zhukov and L. D. Stepin, Biofizika 10, 979 (1965).

    Google Scholar 

  7. V. I. Bruskov, Biofizika 11, 195 (1966).

    Google Scholar 

  8. P. L. Privalov and G. M. Mrevlishvili, Biofizika 11, 951 (1966).

    Google Scholar 

  9. P. L. Privalov and G. M. Mrevlishvili, Biofizika 12, 22 (1967).

    Google Scholar 

  10. N. G. Esipova and Yu. N. Chirgadze, in The State and Role of Water in Biological Systems (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  11. V. V. Vapnyar, Sovrem. Naukoemkie Tekhnologii 7, 62 (2010).

    Google Scholar 

  12. A. A. Samkov, S. S. Dzhimak, M. G. Barishev, et al., Biophysics (Moscow) 60 (1), 107 (2015).

    Article  Google Scholar 

  13. L. N. Baturov and I. N. Govor, Biophysics (Moscow) 60 (1), 157 (2015).

    Article  Google Scholar 

  14. Proc. Int. Conf. “The Structure of Water: Physical and Biological Aspects” (St. Petersburg, 2013) [in Russian]. http://biophys.ru/arxiv/conf/spb-2013.

  15. S. I. Aksenov, Water and Its Role in Regulation of Biological Processes (IKI, Izhevsk, 2004) [in Russian].

    Google Scholar 

  16. E. Z. Gak, Magnetic Fields and Water Electrolytes in Nature, Scientific Research, and Technologies (Elmor, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  17. K. L. Danilov, Vestn. Mezhdunardnoi Akademii Kholoda 2, 34 (2010).

    Google Scholar 

  18. V. D. Zelepukhin and I. D. Zelepukhin, A Ket to tyhe Water of Life (Kainar, Alma-Ata, 1987) [in Russian].

    Google Scholar 

  19. N. L. Lavrik, V. V. Boriskin, K. L. Danilov, et al., Khimiya v Interesakh Ustoichivogo Razvitiya 17 (1), 43 (2009).

    Google Scholar 

  20. N. L. Lavrik, V. V. Boriskin, K. L. Danilov, et al., Khimiya v Interesakh Ustoichivogo Razvitiya 16 (3) 307 (2008).

    Google Scholar 

  21. H. Remy, Treatise on Inorganic Chemistry, Vol. 1: Introduction and Main Groups of the Periodic Table (Elsevier, Amsterdam, 1956).

    Google Scholar 

  22. E. Y. Workman and S. E. Reynolds. Phys. Rev. 78 (3), 254 (1950).

    Article  ADS  Google Scholar 

  23. L. F. Koroleva, N. V. Cherednichenko, D. V. Kiseleva, et al., Khimiya v Interesakh Ustoichivogo Razvitiya 17 (1), 29 (2009).

    Google Scholar 

  24. F. Albarede, Geochemistry (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  25. K. L. Danilov, N. L. Lavrik, V. V. Boriskin, and G. A. Fokin, Biophysics (Moscow) 54 (5), 590 (2009).

    Article  Google Scholar 

  26. X. Wei, P. B. Miranda, and Y. R. Shen. Phys. Rev. Lett. 86 (8), 1545 (2001).

    Article  ADS  Google Scholar 

  27. N. H. Fletcher, Chemical Physics of Ice (Cambridge University Press, 1970).

    Book  Google Scholar 

  28. T. J. Takahashi, Atmos. Sci. 26, 1253 (1969).

    Article  ADS  Google Scholar 

  29. A. K. Pikaev, Modern Radiation Chemistry: Radiolysis of Gases and Liquids (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  30. O. A. Suvorov and I. V. Yudin, Khim. Vykokikh Energii 42 (1), 11 (2008).

    Google Scholar 

  31. V. A. Tsarev, Usp Fiz. Nauk 160, 1 (1990).

    Article  Google Scholar 

  32. O. S. Fedorova and V. M. Berdnikov, React. Kinet. Catal. Lett. 23 (1), 73 (1983)

    Article  Google Scholar 

  33. A. V. Lobanov, Extended Abstract of Candidate’s Dissertation in Chemistry (Moscow, 2004).

    Google Scholar 

  34. G. A. Domrachev, Yu. L. Rodygin, A. D. Selivanovskii, et al., Chemistry of the Seas and Oceans (Nauka, Moscow, 1995) [in Rssian].

    Google Scholar 

  35. S. J. Park, N. H. Kim, B. H. Jeong, et al., Brain Res. 1238, 172 (2008).

    Article  Google Scholar 

  36. CRC Handbook of Chemistry and Physics, 80th ed., Ed. by D. R. Lide (Boca Raton, CRC Press, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Lavrik.

Additional information

Original Russian Text © N.L. Lavrik, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 227–236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrik, N.L. The effect of recrystallization of aqueous solutions of metal sulfates on the acid–base balance. BIOPHYSICS 62, 164–171 (2017). https://doi.org/10.1134/S0006350917020142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020142

Keywords

Navigation