Skip to main content
Log in

Water in the Earth’s Lower Mantle

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

All major, rock-forming lower-mantle minerals (bridgmanite, CaSi-perovskite, ferropericlase and stishovite) are “nominally anhydrous minerals” (NAMs), in which hydrogen comprises less than 1 wt % and whose chemical formula would be normally written without hydrogen. In NAMs, hydrogen occupies various defects of the crystal lattice and is bonded to structural oxygen, forming hydroxyl groups. Currently, two main techniques can be used for water determination in the mantle minerals: Fourier transform infrared spectrometry (FTIR) and secondary ion mass spectrometry (SIMS). They produce different results: determinations by SIMS are usually higher than quantifications of FTIR. As a result, the estimates of water concentrations in lower-mantle minerals vary widely. Most reliable concentrations of water are 1400–1800 ppm in bridgmanite, 10–80 ppm in ferropericlase, and 20–150 ppm in stishovite. The average concentration of water in the lower mantle is ~1500 ppm. Despite such minor concentrations in lower-mantle minerals, water forms a great reservoir within the lower mantle, probably amounting ~45.45 × 1023 grams H2O, i.e., ~3.3 times the mass of the Earth’s oceans. Some amount of water is transported into the lower mantle by subducting lithospheric slabs; this amount is balanced by the water flux from the lower mantle to the transition zone. Within areas of partial melting in the lower and upper parts of the lower mantle, as well as in some local areas, stress and thermal increase initiate release of water from lower-mantle minerals into melt. The enrichment of partial melts with H2O depends on the P–T conditions, oxygen fugacity values, and percentage of melting. It causes major geodynamic processes that are initiated within the deep Earth. The major source of the water reservoir in the lower mantle is primordial water stored early in the Earth’s evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Akber-Knutson and M. S. T. Bukowinski, “The energetics of aluminum solubility into MgSiO3 perovskite at lower mantle conditions,” Earth Planet. Sci. Lett. 220, 317–330 (2004). doi 10.1016/S0012–821X(04)00065–2

    Article  Google Scholar 

  2. F. Albarede, “Volatile accretion history of the terrestrial planets and dynamic implications,” Nature 461, 1227–1233 (2009). doi 10.1038/nature08477

    Article  Google Scholar 

  3. L. S. Armstrong, M. M. Hirschmann, B. D. Stanley, E. G. Falksen, S. D. Jacobsen, “peciation and solubility of reduced C–O–H–N volatiles in mafic melt: implications for volcanism, atmospheric evolution, and deep volatile cycles in terrestrial planets,” Geochim. Cosmochim. Acta 171, 283–302 (2015). doi 10.1016/j.gca.2015.07.007

    Article  Google Scholar 

  4. C. Aubaud, A. C.Withers, M. M. Hirschmann, Y. Guan, L. A. Leshin, S. J. Mackwell, and D. R. Bell, “Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals,” Am. Mineral. 92 (5–6), 811–828 (2007).

    Article  Google Scholar 

  5. Z. G. Bazhanova, A. R. Oganov, and O. Gianola, “Fe–C and Fe–H systems at pressures of the Earth’s Inner Core,” Physics-Uspekhi 55 (5), 489–497 (2012). doi 10.3367/UFNe.0182.201205c.0521

    Article  Google Scholar 

  6. D. R. Bell and G. R. Rossman, “Water in the Earth’s mantle: The role of nominally anhydrous minerals,” Science 255, 139l–1397 (1992).

    Article  Google Scholar 

  7. A. Beran and E. Libowitzky, “Water in natural mantle minerals II: Olivine, garnet and accessory minerals,” Water in Nominally Anhydrous Minerals, Ed. by H. Keppler and J. R. Smyth, Rev. Mineral. Geochem. 62(1), 169–191 (2006). doi 10.2138/rmg.2006.62.8. 10.2138/rmg.2006.62.8

  8. R. J. Bodnar, T. Azbej, S. P. Becker, C. Cannatelli, A. Fall, and M. J. Severs, “Whole Earth geohydrologic cycle, from the clouds to the core: the distribution of water in the dynamic Earth system,” The Web of Geological Sciences: Advances, Impacts, and Interactions, Ed. by M. E. Bickford, Geol. Soc. Am. Spec. Pap. 500, 431–461 (2013). doi 10.1130/2013.2500(13).10.1130/ 2013.2500(13)

  9. N. Bolfan-Casanova, “Water in the Earth’s mantle,” Mineral. Mag. 69, 229–257 (2005). doi 10.1180/0026461056930248

    Article  Google Scholar 

  10. N. Bolfan-Casanova, H. Keppler, and D. C. Rubie, “Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa,” Earth Planet. Sci. Lett. 182, 209–221 (2000).

    Article  Google Scholar 

  11. N. Bolfan-Casanova, S. Mackwell, H. Keppler, C. McCammon, and D. C. Rubie, “Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle,” Geophys. Res. Lett. 29 (10), 1449 (2002).

    Article  Google Scholar 

  12. N. Bolfan-Casanova, H. Keppler, and D. C. Rubie, “Water partitioning at the 660 km discontinuity and evidence for very low water solubility in magnesium silicate perovskite,” Geophys. Res. Lett. 30 (17), 1905 (2003). doi 10.1029/2003GL017182

    Article  Google Scholar 

  13. N. Bolfan-Casanova, C. A. McCammon, and S. J. Mackwell “Water in transition zone and lower mantle minerals. In: Eds.),” Earth’s Deep Water Cycle, Ed. by S. D. Jacobsen, and S. van der Lee, Geophys. Monogr. Ser. 168, 57–68 (2006).

  14. G. D. Bromiley, F. A. Bromiley, and D. W. Bromiley “On the mechanism for H and Al incorporation in stishovite,” Phys. Chem. Miner. 33, 613–621 (2006). doi 10.1007/s00269–006–0107–9

    Article  Google Scholar 

  15. J. I. Chung H. Kagi, “High concentration of water in stishovite in the MORB system,” Geophys. Res. Lett. 29(21), 2020 (2002). doi 10.1029/2002GL015579

  16. G. Della Ventura, A. Marcelli, and F. Bellatreccia “SR–FTIR microscopy and FTIR imaging in the Earth sciences,” Rev. Mineral. Geochem. 78, 447–479 (2014). doi 10.2138/rmg.2014.78.11

    Article  Google Scholar 

  17. S. Demouchy, S. J. Mackwell, and D. L. Kohlstedt “Influence of hydrogen on Fe–Mg interdiffusion in (Mg,Fe)O and implications for Earth’s lower mantle,” Contrib. Mineral. Petrol. 154 (3), 279–289 (2007). doi 10.1007/s00410–007–0193–9

    Article  Google Scholar 

  18. L. T. Elkins-Tanton, “Linked magma ocean solidification and atmospheric growth for Earth and Mars,” Earth Planet. Sci. Lett.271, 181–191 (2008). doi 10.1016/ j.epsl.2008.03.062

    Article  Google Scholar 

  19. H. Fei, D. Yamazaki, M. Sakurai, N. Miyajima, H. Ohfuji, T. Katsura, and T. Yamamoto “A nearly water–saturated mantle transition zone inferred from mineral viscosity,” Sci. Adv. 3, e1603024 (2017).

    Article  Google Scholar 

  20. E. Füri, D. R. Hilton, S. A. Halldórsson, P. H. Barry, D. Hahm, T. P. Fischer, and K. Grönvold, “Apparent decoupling of the He and Ne isotope systematics of the Icelandic mantle: the role of He depletion, melt mixing, degassing fractionation and air interaction,” Geochim. Cosmochim. Acta (74), 3307–3332 (2010).

  21. W. S. Fyfe, “Lattice energies, phase transformations and volatiles in the mantle,” Phys. Earth Planet. Inter. 3, 196–200 (1970).

    Article  Google Scholar 

  22. E. M. Galimov, “Formation of the Moon and the Earth from a Common Supraplanetary Gas–Dust Cloud (Lecture Presented at the XIX All–Russia Symposium on Isotope Geochemistry on November 16, 2010),” Geochem. Int. 49 (6), 537–554 (2011).

    Article  Google Scholar 

  23. E. J. Garnero and A. K. McNamara, “Structure and dynamics of the Earth’s lower mantle,” Science, 320, 626–628 (2008). . doi 10.1126/science.1148028

    Article  Google Scholar 

  24. D. W. Graham, “Noble gas isotope geochemistry of mid–ocean ridge and ocean island basalts: characterization of mantle source reservoirs,” Rev. Mineral. Geochem. 47(1), 247–317 (2002). doi 10.2138/rmg.2002.47.8

    Article  Google Scholar 

  25. A. N. Halliday, “The origins of volatiles in the terrestrial planets,” Geochim. Cosmochim. Acta 105, 146–171 (2013). doi 10.1016/j.gca.2012.11.015

    Article  Google Scholar 

  26. L. J. Hallis, G. R. Huss, K. Nagashima, G. J. Taylor, S. A. Halldórsson, D. R. Hilton, and M. J. Mottl “Evidence for primordial water in Earth’s deep mantle,” Science 350(6262), 795–797 (2015). doi 10.1126/science.aac4834

    Article  Google Scholar 

  27. K. Hamano, Y. Abe, and H. Genda “Emergence of two types of terrestrial planet on solidification of magma ocean,” Nature 497, 608–610 (2013). doi 10.1038/nature12163

    Article  Google Scholar 

  28. P. G. Harris and E. A. K. Middlemost, “The evolution of kimberlites,” Lithos 3, 77–88 (1970).

    Article  Google Scholar 

  29. B. Harte, J. W. Harris, M. T. Hutchison, G. R. Watt, and M. C. Wilding “Lower mantle mineral associations in diamonds from Sao Luiz, Brazil,” Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, Ed. by Y. Fei et al., Geochem. Soc. Spec. Publ. 6, 125–153 (1999).

  30. E. Hauri, “SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions,” Chem. Geol. 183 (1–4), 115–141 (2002). doi 10.1016/S0009–2541(01)00374–6

    Article  Google Scholar 

  31. E. R. Hernández, D. Alfe, and J. Brodholt “The incorporation of water into LM perovskites: A first–principles study,” Earth Planet. Sci. Lett. 364, 37–43 (2013). doi 10.1016/j.epsl.2013.01.005

    Article  Google Scholar 

  32. M. M. Hirschmann, A. C. Withers, P. Ardia, and N. T. Foley “Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets,” Earth Planet. Sci. Lett. 345, 38–48 (2012). doi 10.1016/j.epsl.2012.06.031

    Article  Google Scholar 

  33. H. J. Hui, Y. J. Xu, and M. Pan “On water in nominally anhydrous minerals from mantle peridotites and magmatic rocks,” Sci. China Earth Sci. 59 (6), 1157–1172 (2016). doi 10.1007/s11430–016–5308–6

    Article  Google Scholar 

  34. T. Inoue, T. Wada, R. Sasaki, and H. Yurimoto, “Water partitioning in the Earth’s mantle,” Phys. Earth Planet. Inter. 183, 245–251 (2010). doi 10.1016/j.pepi.2010.08.003

    Article  Google Scholar 

  35. T. Inoue, S. Kakizawa, K. Fujino, T. Kuribayashi, T. Nagase, S. Gréaux, Y. Higo, N. Sakamoto, H. Yurimoto, T. Hattori, and A. Sano, “Hydrous bridgmanite: water storage capacity in the lower mantle,” Advances in High–Pressure Research- III: Towards Geodynamic Implications-20 16. Novosibirsk, Russia (Novosibirsk, 2016), p. 13.

  36. M. G. Jackson, R. W. Carlson, M. D. Kurz, P. D. Kempton, D. Francis, and J. Blusztajn “Evidence for the survival of the oldest terrestrial mantle reservoir,” Nature 466, 853–856 (2010). doi 10.1038/nature09287

    Article  Google Scholar 

  37. B. Joachim, A. Wohlers, N. Norberg, E. Garde’s, E. Petrishcheva, and R. Abart, “Diffusion and solubility of hydrogen and water in periclase,” Phys. Chem. Miner. 40 (1), 19–27 (2013). doi 10.1007/s00269–012–0542–8

    Article  Google Scholar 

  38. F. Kaminsky, “Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond,” Earth-Sci. Rev. 110 (1–4), 127–147 (2012). doi 10.1016/j.earscirev.2011.10.005

  39. F. V. Kaminsky, The Earth’s Lower Mantle: Composition and Structure (Springer, 2017).

    Book  Google Scholar 

  40. F. V. Kaminsky, R. Wirth, and A. Schreiber “A microinclusion of LM rock and some other LM inclusions in diamond,” Can. Mineral. 53 (1), 83–104 (2015). doi 10.3749/canmin.1400070

    Article  Google Scholar 

  41. H. Keppler and N. Bolfan-Casanova “Thermodynamics of water solubility and partitioning,” Water in Nominally Anhydrous Minerals, Ed. by H. Keppler and J. R. Smyth, Rev. Mineral. Geochem. 62 (1), 193–230 (2006). doi 10.2138/rmg.2006.62.9.10.2138/rmg.2006.62.9

  42. A. K. Kleppe and A. P. Jephcoat, “Raman spectroscopic studies of hydrous and nominally anhydrous deep mantle phases,” Earth’s Deep Water Cycle, Ed. by S. D. Jacobsen and S. van der Lee, Geophys. Monogr. Ser. 168, 69–93 (2006). doi 10.1029/168GM07.10.1029/168GM07

  43. K. Koga, E. Hauri, M. Hirschmann, and D. Bell, “Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals,” Geochem., Geophys., Geosyst. 4 (2), 1019 (2003). doi 10.1029/2002GC000378

    Article  Google Scholar 

  44. S. C. Kohn and K. J. Grant, “The partitioning of water between nominally anhydrous minerals and silicate melts,” Water in Nominally Anhydrous Minerals, Ed. by H. Keppler and J. R. Smyth, Rev. Mineral. Geochem. 62 (1), 231–241 (2006). doi 10.2138/rmg.2006.62.10. 10.2138/rmg.2006.62.10

  45. M. V. Kolesnichenko, D. A. Zedgenizov, K. D. Litasov, I. Yu. Safonova, and A. L. Ragozin, “Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya kimberlite pipe,” Gondwana Res. 47, 249–266 (2017). doi 10.1016/j.gr.2016.09.011

    Article  Google Scholar 

  46. T. Komabayashi, S. Omori, and S. Maruyama, “Petrogenetic grid in the system MgO–SiO2–H2O up to 30 GPa, 1600 degrees C: applications to hydrous peridotite subducting into the Earth’s deep interior,” J. Geophys. Res B 109, B03206 (2004). doi 10.1029/2003JB002651

    Article  Google Scholar 

  47. I. Kovács, J. Hermann, H. St. C. O’Neill, J. F. Gerald, M. Sambridge, G. Horvath, “Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra,” Am. Mineral. 93 (5–6), 765–778 (2008).

    Article  Google Scholar 

  48. A. G. Kvashnin, I. A. Kruglov, D. V. Semenok, and A. R. Oganov, “Iron superhydrides FeH5 and FeH6: stability, electronic properties and superconductivity,” J. Phys. Chem. C 122, 4731–4736 (2018). doi 10.1021/acs.jpcc.8b01270

    Article  Google Scholar 

  49. C.-T. A. Lee and W.-P. Chen, “Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth’s mantle,” Earth Planet. Sci. Lett. 255 (3–4), 357–366 (2007). doi 10.1016/j.epsl.2006.12.022

    Article  Google Scholar 

  50. C.-T. A. Lee, P. Luffi, T. Höink, J. Li, R. Dasgupta, and J. Hernlund, “Upside–down differentiation and generation of a ‘primordial’ lower mantle,” Nature 463, 930–933 (2010). doi 10.1038/nature08824

    Article  Google Scholar 

  51. E. Libowitzky and A. Beran, “The structure of hydrous species in nominally anhydrous minerals: Information from polarized IR spectroscopy,” Water in Nominally Anhydrous Minerals, Ed. by H. Keppler and J. R. Smyth, Rev. Mineral. Geochem. 62(1), 29–52 (2006). doi 10.2138/ rmg.2006.62.2.10.2138/rmg.2006.62.2

  52. E. Libowitzky and G. R. Rossman, “Principles of quantitative absorbance measurements in anisotropic crystals,” Phys. Chem. Miner. 23, 319–327 (1996).

    Article  Google Scholar 

  53. K. D. Litasov, “The influence of Al2O3 on the H2O content bearing in periclase and ferropericlase at 25 GPa,” Russ. Geol. Geophys. 51 (6), 827–834 (2010).

    Article  Google Scholar 

  54. K. D. Litasov and E. Ohtani, “Effect of water on the phase relations in Earth’s mantle and deep water cycle,” Advances in High–Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 115–156 (2007). doi 10.1130/2007.2421(08).10.1130/2007.2421(08)

  55. K. Litasov, E. Ohtani, F. Langenhorst, H. Yurimoto, T. Kubo, and T. Kondo, “Water solubility in Mg–perovskites and water storage capacity in the lower mantle,” Earth Planet. Sci. Lett. 211, 189–203 (2003). doi 10.1016/S0012–821X(03)00200–0

    Article  Google Scholar 

  56. K. D. Litasov, H. Kagi, A. Shatskiy, E. Ohtani, D. L. Lakshtanov, J. D. Bass, and E. Ito, “High hydrogen solubility in Al–rich stishovite and water transport in the lower mantle,” Earth Planet. Sci. Lett. 262, 620–634 (2007). doi 10.1016/j.epsl.2007.08.015

    Article  Google Scholar 

  57. R. F. Martin and G. Donnay, “Hydroxyl in the mantle,” Am. Mineral. 57(1), 554–570 (1972).

    Google Scholar 

  58. B. Marty, “The origins and concentrations of water, carbon, nitrogen and noble gases on Earth,” Earth Planet. Sci. Lett. 313–314, 56–66 (2012). doi 10.1016/j.epsl.2011.10.040

    Article  Google Scholar 

  59. S. S. Matsyuk and K. Langer, “Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform,” Contrib. Mineral. Petrol. 147 (4), 413–437 (2004). doi 10.1007/s00410–003–0541–3

    Article  Google Scholar 

  60. W. F. McDonough, “Compositional Model for the Earth’s Core,” Treatise on Geochemistry, 2nd edition, Ed. by R. W. Carlson, (Elsevier, 2014), pp. 559–576. doi 10.1016/B978–0–08–095975–7.00215–1

    Google Scholar 

  61. C. Meade, J. A. Reffner, and E. Ito, “Synchrotron infrared absorbance measurements of hydrogen in MgSiO3 perovskite,” Science 264, 1558–1560 (1994).

    Article  Google Scholar 

  62. M. Merli, C. Bonadiman, V. Diella, and A. Pavese “Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modeling,” Geochim. Cosmochim. Acta 173, 304–318 (2016). doi 10.1016/j.gca.2015.10.025

    Article  Google Scholar 

  63. E. W. J. Mitchell and J. D. Rigden, “The effects of radiation on the near infra-red absorption spectrum of α–quartz,” Philosoph. Mag. 2, 941–956 (1957).

    Article  Google Scholar 

  64. M. Mookherjee, L. Stixrude, and B. Karki “Hydrous silicate melt at high pressure,” Nature 452 (7190), 983–986 (2008). doi 10.1038/nature06918

    Article  Google Scholar 

  65. J. L. Mosenfelder and G. R. Rossman, “Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene,” Am. Mineral. 98(5–6), 1026–1041 (2013). doi 10.2138/am.2013.4291

    Article  Google Scholar 

  66. J. L. Mosenfelder, G. R. Rossman, and E. A. Johnson “Hydrous species in feldspars: a reassessment based on FTIR and SIMS,” Am. Mineral. 100, 1209–1221 (2015). doi 10.2138/am–2015–5034

    Article  Google Scholar 

  67. J. L. Mosenfelder, M. Le Voyer, G. R. Rossman, Y. Guan, D. R. Bell, P. D. Asimow, and J. M. Eiler, “Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol,” Am. Mineral. 96, 1725–1741 (2011). doi 10.2138/am.2011.3810

    Article  Google Scholar 

  68. M. J. Mottl, B. T. Glazer, R. I. Kaiser, and K. J. Meech, “Water and astrobiology,” Chem. Erde, Geochem. 67 (4), 253–282 (2007). doi 10.1016/j.chemer.2007.09.002

    Google Scholar 

  69. J. M. R. Muir and J. P. Brodholt, “Water distribution in the lower mantle: implications for hydrolytic weakening,” Earth Planet. Sci. Lett. 484, 363–369 (2018). doi 10.1016/j.epsl.2017.11.051

    Article  Google Scholar 

  70. S. Mukhopadhyay, “Early differentiation and volatile accretion recorded in deep mantle neon and xenon,” Nature 486 (7401) (101–U124) (2012). doi 10.1038/nature11141

    Article  Google Scholar 

  71. M. Murakami, K. Hirose, H. Yurimoto, S. Nakashima, and N. Takafuji, “Water in Earth’s lower mantle,” Science 295 (5561), 1885–1887 (2002). doi 10.1126/science.1065998

    Article  Google Scholar 

  72. A. Navrotsky, “A lesson from ceramics,” Science 284 (5421), 1788–1789 (1999). doi 10.1126/science.284.5421.1788

    Article  Google Scholar 

  73. P. Németh, K. Leinenweber, H. Ohfuji, T. Groy, K. J. Domanik, I. J. Kovács, J. S. Kovács, and P. R. Buseck “Water-bearing, high-pressure Ca-silicates,” Earth Planet. Sci. Lett. 469, 148–155 (2017). doi 10.1016/j.epsl.2017.04.011

    Article  Google Scholar 

  74. F. Nestola and J. R. Smyth, “Diamonds and water in the deep Earth: a new scenario,” Int. Geol. Rev. 58 (3), 263–276 (2016). doi 10.1080/00206814.2015.1056758

    Article  Google Scholar 

  75. C. Nisr, S.-H. Shim, K. Leinenweber, A. Chizmeshya, “Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa,” Am. Mineral. 102, 2180–2189 (2017). . doi 10.2138/am–2017–5944

    Article  Google Scholar 

  76. D. Novella, N. Bolfan-Casanova, F. Nestola, and J. W. Harris, “H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: implications for the water content of cratonic lithosphere peridotites,” Lithos 230, 180–183 (2015). doi 10.1016/ j.lithos.2015.05.013

    Article  Google Scholar 

  77. I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, “Stability of a hydrous δ‑phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle,” Earth Planet. Sci. Lett. 401, 12–17 (2014). doi 10.1016/ j.epsl.2014.05.059

    Article  Google Scholar 

  78. E. Ohtani, “Water in the mantle,” Elements 1(1), 25–30 (2005).

    Article  Google Scholar 

  79. E. Ohtani, “Hydrous minerals and the storage of water in the deep mantle,” Chem. Geol. 418, 6–15 (2015) doi 10.1016/j.chemgeo.2015.05.005

    Article  Google Scholar 

  80. E. Ohtani, M. Toma, K. Litasov, T. Kubo, and A. Suzuki, “Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle,” Phys. Earth Planet. Inter. 124, 105–117 (2001).

    Article  Google Scholar 

  81. T. Okuchi, “Hydrogen partitioning into molten iron at high pressure: Implications for Earth’s core,” Science 278, 1781–1784 (1997).

    Article  Google Scholar 

  82. W. R. Panero and L. P. Stixrude, “:Hydrogen incorporation in stishovite at high pressure and symmetric bonding in δ–AlOOH,” Earth Planet. Sci. Lett. 221, 421–431 (2004).

    Article  Google Scholar 

  83. W. R. Panero, L. R. Benedetti, and R. Jeanloz “Transport of water into the lower mantle: role of stishovite,” J. Geophys. Res 108, 2039 (2003). doi 10.1029/2002JB002053

    Article  Google Scholar 

  84. W. R. Panero, J. S. Pigott, D. M. Reaman, J. E. Kabbes, and Z. Liu, “Dry (Mg,Fe)SiO3 perovskite in the Earth’s lower mantle,” J. Geophys. Res. Solid Earth 120 (2), 894–908 (2015).

    Article  Google Scholar 

  85. M. S. Paterson, “The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials,” Bull. Minéral. 105, 20–29 (1982).

    Google Scholar 

  86. A. R. Pawley, P. F. McMillan, and J. R. Holloway, “Hydrogen in stishovite, with implications for mantle water contents,” Science 261, 1024–1026 (1993). doi 10.1126/science.261.5124.1024

    Article  Google Scholar 

  87. D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, and L. Vincze, “Hydrous mantle transition zone indicated by ringwoodite included within diamond,” Nature 507, 221–224 (2014). doi 10.1038/nature13080

    Article  Google Scholar 

  88. C. M. Pépin, A. Dewaele, G. Geneste, P. Loubeyre, and M. Mezouar, “New iron hydrides under high pressure,” Phys. Rev. Lett. 113 (26), 265504 (2014). doi 10.1103/PhysRevLett.113.265504

    Article  Google Scholar 

  89. A. H. Peslier, M. Schönbächler, H. Busemann, and S.‑I. Karato, “Water in the Earth’s interior: distribution and origin,” Space Sci. Rev. 212(1–2), 743–810 (2017). doi 10.1007/s11214–017–0387–z

    Article  Google Scholar 

  90. A. Ricolleau, J.-P. Perrillat, G. Fiquet, I. Daniel, J. Matas, A. Addad, N. Menguy, H. Cardon, M. Mezouar, and N. Guignot, “Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle,” J. Geophys. Res 115, B08202 (2010). doi 10.1029/2009JB006709

    Article  Google Scholar 

  91. A. E. Ringwood, “The chemical composition and origin of the earth,” Advances in Earth Science, Ed. by P. M. Hurle (M IT Press, Cambridge, 1966), pp. 287–356.

    Google Scholar 

  92. A. Rosenthal, E. H. Hauri, and M. M. Hirschmann “Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions,” Earth Planet. Sci. Lett. 412, 77–87 (2015). doi 10.1016/j.epsl.2014.11.044

    Article  Google Scholar 

  93. N. L. Ross, G. V. Gibbs, and K. Rosso “Potential docking sites and positions of hydrogen in high-pressure silicates,” Am. Mineral. 88 (10), 1452–1459 (2003).

    Article  Google Scholar 

  94. G. R. Rossman, “Analytical methods for measuring water in nominally anhydrous minerals,” Water in Nominally Anhydrous Minerals, Ed. by H. Keppler and J. R. Smyth, Rev. Mineral. Geochem. 62(1), 1–28 (2006). doi 10.2138/rmg.2006.62.1.10.2138/rmg.2006.62.1

  95. T. Sakamaki, A. Suzuki, and E. Ohtani “Stability of hydrous melt at the base of the Earth’s upper mantle,” Nature 439, 192–194 (2006). doi 10.1038/nature04352

    Article  Google Scholar 

  96. M. J. Sambridge, F. Gerald, I. Kovács, H.St.C. O’Neill, and J. Hermann, “Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development,” Am. Mineral. 93, 751–764 (2008).

    Article  Google Scholar 

  97. T. Sanehira, T. Irifune, T. Inoue, and N. Nishiyama, “Synthesis of hydrous aluminous perovskite (in Japanese),” Abstracts of the 43th High Pressure Conference in Matsuyama, Japan, Rev. High Pressure Sci. Technol. 12, 208 (2002).

  98. S. K. Saxena, H.-P. Liermann, and G. Shen, “Formation of iron hydride and high–magnetite at high pressure and temperature,” Phys. Earth Planet. Inter. 146, 313–317 (2004). doi 10.1016/j.pepi.2003.07.030

    Article  Google Scholar 

  99. B. Schmandt, S. D. Jacobsen, T. W. Becker, Z. Liu, and K. G. Dueker, “Dehydration melting at the top of the lower mantle,” Science 344, 1265–1268 (2014).

    Article  Google Scholar 

  100. G. Silversmit, B. Vekemans, K. Appel, S. Schmitz, T. Schoonjans, F. E. Brenker, F. Kaminsky, and L. Vincze, “Three-dimensional Fe speciation of an inclusion cloud within an ultra-deep diamond by confocal µ–XANES: evidence for late stage overprint,” Analyt. Chem. 83, 6294–6299 (2011). doi 10.1021/ac201073s

    Article  Google Scholar 

  101. J. R. Smyth, “β–Mg2SiO4: A potential host for water in the mantle?,” Am. Mineral. 72, 1051–1055 (1987).

    Google Scholar 

  102. J. R. Smyth, R. J. Swope, and A. R. Pawley “H in rutile–type compounds: II. Crystal chemistry of Al substitution in H–bearing stishovite,” Am. Mineral. 80, 454–456 (1995).

    Article  Google Scholar 

  103. K. Spektor, J. Nylen, E. Stoyanov, A. Navrotsky, R. L. Hervig, K. Leinenweber, G. P. Holland, and U. Häussermann, “Ultrahydrous stishovite from high–pressure hydrothermal treatment of SiO2” PNAS, Proc. Natl. Acad. Sci. USA 108 (52), 20918–20922 (2011). doi 10.1073/pnas.1117152108

    Article  Google Scholar 

  104. K. Spektor, J. Nylen, R. Mathew, M. Eden, E. Stoyanov, A. Navrotsky, K. Leinenweber, and U. Häussermann, “Formation of hydrous stishovite from coesite in high pressure hydrothermal environments,” Am. Mineral. 101, 2514–2524 (2016). doi 10.2138/am-2016-5609

    Article  Google Scholar 

  105. L. Stixrude, E. Wasserman, and R. E. Cohen “Composition and temperature of Earth’s inner core,” J. Geophys. Res.102 (B11), 24, 729–24, 739 (1997).

  106. F. M. Stuart, S. Lass-Evans, J. G. Fitton, and R. M. Ellam, “High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes,” Nature 424, 57–59 (2003).

    Article  Google Scholar 

  107. L. A. Taylor, A. M. Logvinova, G. H. Howarth, Y. Liu, A. H. Peslier, G. R. Rossman, Y. Guang, Y. Chen, and N. V. Sobolev, “Low water contents in diamond mineral inclusions: proto-genetic origin in a dry cratonic lithosphere,” Earth Planet. Sci. Lett. 433, 125–132 (2016). doi 10.1016/j.epsl.2015.10.042

    Article  Google Scholar 

  108. J. P. Townsend, J. Tsuchiya, C. R. Bina, S. D. Jacobsen, “Water partitioning between bridgmanite and postperovskite in the lowermost mantle,” Earth Planet. Sci. Lett. 454, 20–27 (2016). doi 10.1016/j.epsl.2016.08.009

    Article  Google Scholar 

  109. O. Tschauner, S. Huang, E. Greenberg, V. B. Prakapenka, C. Ma, G. R. Rossman, A. H. Shen, D. Zhang, M. Newville, A. Lanzirotti, and K. Tait “Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle,” Science 359 (6380), 1136–1139 (2018). doi 10.1126/science.aao3030

    Article  Google Scholar 

  110. C. B. Vanpeteghem, A. Sano, K. Komatsu, E. Ohtani, and A. Suzuki, “Neutron diffraction study of aluminous hydroxide δ-AlOOD,” Phys. Chem. Miner. 34 (9), 657–661 (2007). doi 10.1007/s00269-007-0180-8

    Article  Google Scholar 

  111. Q. Williams and R. J. Hemley, “Hydrogen in the deep earth,” Annu. Rev. Earth Planet. Sci. 29, 365–418 (2001). doi 10.1146/annurev.earth.29.1.365

    Article  Google Scholar 

  112. R. Wirth, “Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale,” Chem. Geol. 261, 217–229 (2009). doi 10.1016/j.chemgeo.2008.05.019

    Article  Google Scholar 

  113. K. Wright and C. R. A. Catlow, “Calculations on the energetics of water dissolution in wadsleyite,” Phys. Chem. Miner. 23 (1), 38–41 (1996).

    Article  Google Scholar 

  114. P. J. Wyllie, “Ultramafic rocks and the upper mantle,” Mineral. Soc. Am. Spec. Pap. 3, 3–32 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix V. Kaminsky.

Additional information

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix V. Kaminsky Water in the Earth’s Lower Mantle. Geochem. Int. 56, 1117–1134 (2018). https://doi.org/10.1134/S0016702918120042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918120042

Keywords:

Navigation