Skip to main content
Log in

On water in nominally anhydrous minerals from mantle peridotites and magmatic rocks

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Trace amount of water associated with the lattice defects of nominally anhydrous minerals (NAMs) can be measured using Fourier transform infrared spectroscopy (FTIR) and secondary ion mass spectrometry (SIMS). Lots of data on water in NAMs from different lithologies, especially mantle peridotite xenoliths, have been published. The water distribution in olivine from peridotite xenoliths often displays a diffusion profile with high water concentration in the core and low at the rim, which indicates water loss via diffusion during the ascent of host magma. On the other hand, water is homogeneously distributed in pyroxene and its concentration is typically interpreted to represent a mantle value. The water concentration of magma in equilibrium with NAM can be estimated using specific partition coefficient, from which the water content of parental magma and the mantle source can be inferred. The accuracy of this method, however, depends on the selection of appropriate partition coefficient for the system. Using hydrogen isotope compositions and H2O/Ce ratios of mantle NAMs, water source regions can be traced and water heterogeneity can be mapped in the upper mantle. Water plays an important role in the stability of cratonic mantle. The water contents and vertical distribution patterns can be significantly different among different cratonic mantles, which may result from different geologic activities. However, the mantle-plume interaction may not necessarily result in significant change of water content in cratonic mantle. The estimation of the water content in the upper mantle is still largely based on geochemical models due to the limitations of data on water in mantle NAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams A, Nyblade A, Weeraratne D. 2012. Upper mantle shear wave velocity structure beneath the East African plateau: Evidence for a deep, plateau-wide low velocity anomaly. Geophys J Int, 189: 123–142

    Article  Google Scholar 

  • Agrinier P, Hékinian R, Bideau D, Javoy M. 1995. O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction. Earth Planet Sci Lett, 136: 183–196

    Article  Google Scholar 

  • Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. J Geophys Res, 106: 16387–16414

    Article  Google Scholar 

  • Artemieva I M, Mooney W D. 2002. On the relations between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics, 358: 211–231

    Article  Google Scholar 

  • Asimow P D, Dixon J E, Langmuir C H. 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosyst, 5: Q01E16, doi: 10.1029/2003GC000568

    Article  Google Scholar 

  • Asimow P D, Langmuir C H. 2003. The importance of water to oceanic mantle melting regimes. Nature, 421: 815–820

    Article  Google Scholar 

  • Asimow P D, Stein L C, Mosenfelder J L, Rossman G R. 2006. Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains. Am Miner, 91: 278–284

    Article  Google Scholar 

  • Aubaud C, Bureau H, Raepsaet C, Khodja H, Withers A C, Hirschmann M M, Bell D R. 2009. Calibration of the infrared molar absorption coefficients for H in olivine, clinopyroxene and rhyolitic glass by elastic recoil detection analysis. Chem Geol, 262: 78–86

    Article  Google Scholar 

  • Aubaud C, Hauri E H, Hirschmann M M. 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett, 31: L20611, doi: 10.1029/2004GL021341

    Article  Google Scholar 

  • Aubaud C, Withers A C, Hirschmann M M, Guan Y, Leshin L A, Mackwell S J, Bell D R. 2007. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Miner, 92: 811–828

    Article  Google Scholar 

  • Bai Q, Kohlstedt D L. 1992. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 357: 672–674

    Article  Google Scholar 

  • Baptiste V, Tommasi A, Demouchy S. 2012. Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa. Lithos, 149: 31–50

    Article  Google Scholar 

  • Baptiste V, Tommasi A, Vauchez A, Demouchy S, Rudnick R L. 2015. Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: Constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift. Tectonophysics, 639: 34–55

    Article  Google Scholar 

  • Behrens H, Romano C, Nowak M, Holtz F, Dingwell D B. 1996. Nearinfrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M=Li, Na, K): An interlaboratory study. Chem Geol, 128: 41–63

    Article  Google Scholar 

  • Bell D R, Ihinger P D, Rossman G R. 1995. Quantitative analysis of trace OH in garnet and pyroxenes. Am Miner, 80: 465–474

    Article  Google Scholar 

  • Bell D R, Ihinger P D. 2000. The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta, 64: 2109–2118

    Article  Google Scholar 

  • Bell D R, Rossman G R, Maldener J, Endisch D, Rauch F. 2003. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res, 108: 2105, doi: 10.1029/2001JB000679

    Google Scholar 

  • Bell D R, Rossman G R, Maldener J, Endish D, Rauch F. 2004a. Hydroxide in kyanite: A quantitative determination of the absolute amount and calibration of the IR spectrum. Am Miner, 89: 998–1003

    Article  Google Scholar 

  • Bell D R, Rossman G R, Moore R O. 2004b. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery Kimberlite, South Africa. J Petrol, 45: 1539–1564

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992a. Water in the Earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992b. The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib Mineral Petrol, 111: 161–178

    Article  Google Scholar 

  • Beran A, Libowitzky E. 2003. IR spectroscopic characterization of OH defects in mineral phases. Phase Transit, 76: 1–15

    Article  Google Scholar 

  • Beran A, Libowitzky E. 2006. Water in natural mantle minerals II: Olivine, garnet and accessary minerals. Rev Mineral Geochem, 62: 169–191

    Article  Google Scholar 

  • Bizimis M, Peslier A H. 2015. Water in Hawaiian garnet pyroxenites: Implications for water heterogeneity in the mantle. Chem Geol, 397: 61–75

    Article  Google Scholar 

  • Blacic J D. 1972. Effect of water on the experimental deformation of olivine. Geophys Monogr Ser, 16: 109–115

    Google Scholar 

  • Boctor N Z, Alexander C M O’D, Wang J, Hauri E. 2003. The sources of water in Martian meteorites: Clues from hydrogen isotopes. Geochim Cosmochim Acta, 67: 3971–3989

    Article  Google Scholar 

  • Bonadiman C, Hao Y, Coltorti M, Dallai L, Faccini B, Huang Y, Xia Q. 2009. Water contents of pyroxenes in intraplate lithospheric mantle. Eur J Mineral, 21: 637–647

    Article  Google Scholar 

  • Brunner G O, Wondratschek H, Laves F. 1961. Ultrarotuntersuchungen über den einbau von H in natürlichem quarz. Z Elektrochem, 65: 735–750

    Google Scholar 

  • Bureau H, Raepsaet C, Khodja H, Carraro A, Aubaud C. 2009. Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA). Geochim Cosmochim Acta, 73: 3311–3322

    Article  Google Scholar 

  • Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001, doi: 10.1029/2004RG000156

    Article  Google Scholar 

  • Cartigny P, Pineau F, Aubaud C, Javoy M. 2008. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/ Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N). Earth Planet Sci Lett, 265: 672–685

    Article  Google Scholar 

  • Chen H, Xia Q K, Ingrin J, Jia Z B, Feng M. 2015. Changing recycled oceanic components in the manlte source of the Shuangliao Cenozoic basalts, NE China: New constrains from water content. Tectonophysics, 650: 113–123

    Article  Google Scholar 

  • Chen Y, Provost A, Schiano P, Cluzel N. 2011. The rate of water loss olivine-hosted melt inclusions. Contrib Mineral Petrol, 162: 625–636

    Article  Google Scholar 

  • Chesley J T, Rudnick R L, Lee C T. 1999. Re-Os systematics of mantle xenoliths from the East African Rift: Age, structure, and history of the Tanzanian craton. Geochim Cosmochim Acta, 63: 1203–1217

    Article  Google Scholar 

  • Della Ventura G, Marcelli A, Bellatreccia F. 2014. SR-FTIR microscopy and FTIR imaging in the Earth sciences. Rev Mineral Geochem, 78: 447–479

    Article  Google Scholar 

  • Demouchy S, Ishikawa A, Tommasi A, Alard O, Keshav S. 2015. Characterization of hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example. Lithos, 212-215: 189–201

    Article  Google Scholar 

  • Demouchy S, Jacobsen S D, Gaillard F, Stern C R. 2006. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34: 429–432

    Article  Google Scholar 

  • Demouchy S. 2010. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett, 295: 305–313

    Article  Google Scholar 

  • Dixon J E, Clague D A. 2001. Volatiles in basaltic glasses from Loihi seamount, Hawaii: Evidence for a relatively dry plume component. J Petrol, 42: 627–654

    Google Scholar 

  • Dixon J E, Dixon T H, Bell D R, Malservisi R. 2004. Lateral variation in upper mantle viscosity: Role of water. Earth Planet Sci Lett, 222: 451–467

    Article  Google Scholar 

  • Dixon J E, Leist L, Langmuir C, Schilling J G. 2002. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420: 385–389

    Article  Google Scholar 

  • Doucet L S, Peslier A H, Ionov D A, Brandon A D, Golovin A V, Goncharov A G, Ashchepkov I V. 2014. High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochim Cosmochim Acta, 137: 159–187

    Article  Google Scholar 

  • Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the Archaean keel? J Petrol, 41: 933–950

    Article  Google Scholar 

  • Gong B, Zheng Y F, Chen R X. 2007a. An online method combining a thermal conversion elemental analyzer with isotope ration mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun Mass Spectrom, 21: 1386–1392

    Article  Google Scholar 

  • Gong B, Zheng Y F, Chen R X. 2007b. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Miner, 34: 687–698

    Article  Google Scholar 

  • Gose J, Reichart P, Dollinger G, Schmädicke E. 2008. Water in natural olivine—Determined by proton-proton scattering analysis. Am Miner, 93: 1613–1619

    Article  Google Scholar 

  • Gose J, Schmädicke E, Beran A. 2009. Water in enstatite from mid-Atlantic ridge peridotite: Evidence for the water content of suboceanic mantle? Geology, 37: 543–546

    Article  Google Scholar 

  • Grant K, Ingrin J, Lorand J P, Dumas P. 2007. Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol, 154: 15–34

    Article  Google Scholar 

  • Griggs D. 1967. Hydrolytic weakening of quartz and other silicates. Geophys J Roy Astron Soc, 14: 19–31

    Article  Google Scholar 

  • Hamada M, Ushioda M, Fujii T, Takahashi E. 2013. Hydrogen concentration in plagioclase as a hygrometer of arc basaltic melts: Approaches from melt inclusion analyses and hydrous melting experiments. Earth Planet Sci Lett, 365: 253–262

    Article  Google Scholar 

  • Hao Y, Xia Q, Li Q, Chen H, Feng M. 2014. Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China. Chem Geol, 380: 7–19

    Article  Google Scholar 

  • Hao Y T, Xia Q K, Liu S C, Feng M, Zhang Y P. 2012. Recognizing juvenile and relict lithospheric mantle beneath the North China craton: Combined analysis of H2O, major and trace elements and Sr-Nd isotope compositions of clinopyroxenes. Lithos, 149: 136–145

    Article  Google Scholar 

  • Hauri E, Wang J, Dixon J E, King P L, Mandeville C, Newman S. 2002. SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol, 183: 99–114

    Article  Google Scholar 

  • Hauri E H, Gaetani G A, Green T H. 2006. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett, 248: 715–734

    Article  Google Scholar 

  • Hercule S, Ingrin J. 1999. Hydrogen in diopside: Diffusion, kinetics of extraction-incorporation, and solubility. Am Miner, 84: 1577–1587

    Article  Google Scholar 

  • Hermann J, Gerald, J D F, Malaspina N, Berry A J, Scambelluri M. 2007. OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contrib Mineral Petrol, 153: 417–428

    Article  Google Scholar 

  • Hier-Majumder S, Mei S, Kohlstedt D L. 2005. Water weakening of clinopyroxene in diffusion creep. J Geophys Res, 110: B07406, doi: 10.1029/2004JB003414

    Article  Google Scholar 

  • Hirschmann M M. 2006. Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci, 34: 629–653

    Article  Google Scholar 

  • Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93–108

    Article  Google Scholar 

  • Hui H, Peslier A H, Rudnick R L, Simonetti A, Neal C R. 2015. Plume-cratonic lithosphere interaction recorded by water and other trace elements in peridotite xenoliths from the Labait volcano, Tanzania. Geochem Geophys Geosyst, 16: 1687–1710

    Article  Google Scholar 

  • Hui H, Peslier A H, Zhang Y, Neal C R. 2013. Water in lunar anorthosites and evidence for a wet early Moon. Nat Geosci, 6: 177–180

    Article  Google Scholar 

  • Ingrin J, Blanchard M. 2006. Diffusion of hydrogen in minerals. Rev Mineral Geochem, 62: 291–320

    Article  Google Scholar 

  • Ingrin J, Skogby H. 2000. Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. Eur J Mineral, 12: 543–570

    Article  Google Scholar 

  • Jamtveit B, Brooker R, Brooks K, Larsen L M, Pedersen T. 2001. The water content of olivines from the North Atlantic Volcanic Province. Earth Planet Sci Lett, 186: 401–415

    Article  Google Scholar 

  • Johnson E A, Rossman G R. 2003. The concentration and speciation of hydrogen in feldspar using FTIR and 1H MAS NMR spectroscopy. Am Miner, 88: 901–911

    Article  Google Scholar 

  • Johnson E A, Rossman G R. 2004. A survey of hydrous species and concentrations in igneous feldspars. Am Miner, 89: 586–600

    Article  Google Scholar 

  • Johnson E A. 2006. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Rev Mineral Geochem, 62: 117–154

    Article  Google Scholar 

  • Jordan T H. 1978. Composition and development of the continental tectosphere. Nature, 274: 544–548

    Article  Google Scholar 

  • Katayama I, Karato S. 2008. Effects of water and iron content on the rheological contrast between garnet and olivine. Phys Earth Planet Inter, 166: 57–66

    Article  Google Scholar 

  • Katayama I, Korenaga J. 2011. Is the African cratonic lithosphere wet or dry? Geol Soc Am Spec Pap, 478: 249–256

    Google Scholar 

  • Katayama I, Nakashima S, Yurimoto H. 2006. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos, 86: 245–259

    Article  Google Scholar 

  • Kats A, Haven Y. 1960. Infra-red absorption bands in ?-quartz in the 3-region. Phys Chem Glasses, 1: 99–102

    Google Scholar 

  • Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325: 605–607

    Article  Google Scholar 

  • Keppler H, Bolfan-Casanova N. 2006. Thermodynamics of water solubility and partitioning. Rev Mineral Geochem, 62: 193–230

    Article  Google Scholar 

  • King J C, Wood D L, Dodd D M. 1960. Infrared and low-temperature acoustic absorption in synthetic quartz. Phys Rev Lett, 4: 500–501

    Article  Google Scholar 

  • Kleppe A K, Jephcoat A P, Smyth J R. 2002. Raman spectroscopic study of hydrous γ-Mg2SiO4 to 56.5 GPa. Phys Chem Miner, 29: 473–476

    Article  Google Scholar 

  • Klügel A. 2001. Prolonged reactions between harzburgite xenoliths and silica-undersaturated melt: Implications for dissolution and Fe-Mg interdiffusion rates of orthopyroxene. Contrib Mineral Petrol, 141: 1–14

    Article  Google Scholar 

  • Koch-Müller M, Matsyuk S, Rhede D, Wirth R, Khisina N. 2006. Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe. Phys Chem Miner, 33: 276–287

    Article  Google Scholar 

  • Koga K, Hauri E, Hirschmann M, Bell D. 2003. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst, 4: 1019, doi: 10.1029/2002GC000378

    Article  Google Scholar 

  • Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the α, β, and γ phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol, 123: 345–357

    Article  Google Scholar 

  • Kohlstedt D L, Mackwell S J. 1998. Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem, 207: 147–162

    Article  Google Scholar 

  • Kohn S C. 2006. Structural studies of OH in nominally anhydrous minerals using NMR. Rev Mineral Geochem, 62: 53–66

    Article  Google Scholar 

  • Koornneef J M, Davies G R, Döpp S P, Vukmanovic Z, Nikogosian I K, Mason P R D. 2009. Nature and timing of multiple metasomatic events in the sub-cratonic lithosphere beneath Labait, Tanzania. Lithos, 112S: 896–912

    Article  Google Scholar 

  • Kovács I, Hermann J, O’Neill HSt C, Gerald J F, Sambridge M, Horvath G. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Miner, 93: 765–778

    Article  Google Scholar 

  • Kurosawa M, Yurimoto H, Sueno S. 1997. Patterns in the hydrogen and trace element compositions of mantle olivines. Phys Chem Miner, 24: 385–395

    Article  Google Scholar 

  • Kyser T K, O’Neil J R. 1984. Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta, 48: 2123–2133

    Article  Google Scholar 

  • Larsen C F, Motyka R J, Freymueller J T, Echelmeyer K A, Ivins E R. 2005. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet Sci Lett, 237: 548–560

    Article  Google Scholar 

  • Lee C-T, Rudnick R L. 1999. Compositionally stratified cratonic lithosphere: Petrology and geochemistry of peridotite xenoliths from the Labait tuff cone, Tanzania. Proc Int Kimberlite Conf, 7: 503–521

    Google Scholar 

  • Lee C-T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90

    Article  Google Scholar 

  • Li P, Xia Q K, Deloule E, Chen H, Gu X Y, Feng M. 2015. Temporal variation of H2O content in the lithospheric mantle beneath the eastern North China craton: Implications for the destruction of cratons. Gondwana Res, 28: 276–287

    Article  Google Scholar 

  • Li Z X, Lee C T, Peslier A H, Lenardic A, Mackwell S J. 2008. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res, 113, doi: 1029/2007JB005540

  • Libowitzky E, Beran A. 2006. The structure of hydrous species in nominally anhydrous minerals: Information from polarized IR spectroscopy. Rev Mineral Geochem, 62: 29–52

    Article  Google Scholar 

  • Libowitzky E, Rossman G R. 1996. Principles of quantitative absorbance measurements in anisotropic crystals. Phys Chem Miner, 23: 319–327

    Article  Google Scholar 

  • Libowitzky E, Rossman G R. 1997. An IR absorption calibration for water in minerals. Am Miner, 82: 1111–1115

    Article  Google Scholar 

  • Liu J, Xia Q-K, Deloule E, Ingrin J, Chen H, Feng M. 2015. Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: Recycled oceanic components in the mantle source. J Petrol, 56: 681–702

    Article  Google Scholar 

  • Mackwell S. 2012. Melt inclusions in olivine: Reliable witnesses to Earth’s interior? Geology, 40: 959–960

    Article  Google Scholar 

  • Mackwell S J, Kohlstedt D L, Paterson M S. 1985. The role of water in the deformation of olivine single crystals. J Geophys Res, 90: 11319–11333

    Article  Google Scholar 

  • Maldener J, Hösch A, Langer K, Rauch F. 2003. Hydrogen in some natural garnets studied by nuclear reaction analysis and vibrational spectroscopy. Phys Chem Miner, 30: 337–344

    Article  Google Scholar 

  • Martin R F, Donnay G. 1972. Hydroxyl in the mantle. Am Miner, 57: 554–570

    Google Scholar 

  • Matsyuk S S, Langer K, Hösch A. 1998. Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib Mineral Petrol, 132: 163–179

    Article  Google Scholar 

  • Matsyuk S S, Langer K. 2004. Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contrib Mineral Petrol, 147: 413–437

    Article  Google Scholar 

  • Matveev S, Stachel T. 2007. FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration. Geochim Cosmochim Acta, 71: 5528–5543

    Article  Google Scholar 

  • Matveev S. Portnyagin M, Ballhaus C, Brooker R, Geiger C A. 2005. FTIR spectrum of phenocryst olivine as an indicator of silica saturation in magmas. J Petrol, 46: 603–614

    Article  Google Scholar 

  • Mei S, Kohlstedt D L. 2000a. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res, 105: 21457–21469

    Article  Google Scholar 

  • Mei S, Kohlstedt D L. 2000b. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res, 105: 21471–21481

    Article  Google Scholar 

  • Michael P. 1995. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth Plant Sci Lett, 131: 301–320

    Article  Google Scholar 

  • Mitchell E W J, Rigden J D. 1957. The effects of radiation on the near infra-red absorption spectrum of α-quartz. Phil Mag, 2: 941–956

    Article  Google Scholar 

  • Mosenfelder J L, Deligne N I, Asimow P D, Rossman G R. 2006b. Hydrogen incorporation in olivine from 2–12 GPa. Am Miner, 91: 285–294

    Article  Google Scholar 

  • Mosenfelder J L, Le Voyer M, Rossman G R, Guan Y, Bell D B, Asimow P D, Eiler J M. 2011. Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol. Am Miner, 96: 1725–1741

    Article  Google Scholar 

  • Mosenfelder J L, Rossman G R, Johnson E A. 2015. Hydrogen species in feldspars: A reassessment based on FTIR and SIMS. Am Miner, 100: 1209–1221

    Article  Google Scholar 

  • Mosenfelder J L, Sharp T G, Asimow P D, Rossman G R. 2006a. Hydrogen incorporation in natural mantle olivines. Geophys Monogr Ser, 168: 45–56

    Google Scholar 

  • Nazzareni S, Skogby H, Zanazzi P F. 2011. Hydrogen content in clinopyroxene phenocrysts from Salina mafic lavas. Contrib Mineral Petrol, 162: 275–288

    Article  Google Scholar 

  • Novella D, Bolfan-Casanova N, Nestola F, Harris J W. 2015. H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: Implications for the water content of cratonic lithosphere peridotites. Lithos, 230: 180–183

    Article  Google Scholar 

  • Novella D, Frost D J, Hauri E H, Bureau H, Raepsaet C, Roberge M. 2014. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet Sci Lett, 400: 1–13

    Article  Google Scholar 

  • Nyblade A A, Owens T J, Gurrola H, Ritsema J, Langston C A. 2000. Seismic evidence for a deep upper mantle thermal anomaly beneath East Africa. Geology, 28: 599–602

    Article  Google Scholar 

  • O’Leary J A. 2007. Hydrogen isotope geochemistry of the mantle: Constraints from back arc basin basalts and mantle xenoliths. Doctor Dissertation. Pasadena: California Institute of Technology

    Google Scholar 

  • O’Leary J A, Gaetani G A, Hauri E H. 2010. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett, 297: 111–120

    Article  Google Scholar 

  • O’Leary J A, Rossman G R, Eiler J M. 2007. Hydrogen analysis in minerals by continuous-flow spectrometry. Am Miner, 92: 1990–1997

    Article  Google Scholar 

  • O’Neill C J, Lenardic A, Griffin W L, O’Reilly S Y. 2008. Dynamics of cratons in an evolving mantle. Lithos, 102: 12–24

    Article  Google Scholar 

  • Okumura S. 2011. The H2O content of andesitic magmas from three volcanoes in Japan, inferred fron the infrared analysis of clinopyroxene. Eur J Mineral, 23: 771–778

    Article  Google Scholar 

  • Paterson M S. 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Minéral, 105: 20–29

    Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, Mc Neill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Venkemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Peslier A H, Bizimis M, Matney M. 2015. Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, Hdiffusion and magma ascent rates. Geochim Cosmochim Acta, 154: 98–117

    Article  Google Scholar 

  • Peslier A H, Bizimis M. 2015. Water in Hawaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere. Geochem Geophys Geosyst, 16: 1211–1232

    Article  Google Scholar 

  • Peslier A H, Luhr J F, Post J. 2002. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett, 201: 69–86

    Article  Google Scholar 

  • Peslier A H, Luhr J F. 2006. Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: Mafic alkali magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett, 242: 302–319

    Article  Google Scholar 

  • Peslier A H, Woodland A B, Bell D R, Lazarov M. 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81

    Article  Google Scholar 

  • Peslier A H, Woodland A B, Bell D R, Lazarov M. 2012. Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim Cosmochim Acta, 97: 213–246

    Article  Google Scholar 

  • Peslier A H, Woodland A B, Wolff J A. 2008. Fast kimberlite ascent estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Acta, 72: 2711–2722

    Article  Google Scholar 

  • Peslier A H. 2010. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res, 197: 239–258

    Article  Google Scholar 

  • Pintér Z, Patkó L, Djoukam J F T, Kovács I, Tchouankoue J P, Falus G, Konc Z, Tommasi A, Barou F, Mihály J, Németh C, Jeffries T. 2015. Characterization of the sub-continental lithospheric mantle beneath the Cameron volcanic line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and Nyos Lakes. J Afr Earth Sci, 111: 170–193

    Article  Google Scholar 

  • Plank T, Cooper L B, Manning C E. 2009. Emerging geothermometers for estimating slab surface temperatures. Nat Geosci, 2: 611–615

    Article  Google Scholar 

  • Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. 2013. Why do mafic magmas contain ~4 wt% water on average? Earth Planet Sci Lett, 364: 168–179

    Article  Google Scholar 

  • Pollitz F F, Bürgmann R, Romanowicz B. 1998. Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science, 280: 1245–1249

    Article  Google Scholar 

  • Rossman G R. 1988. Vibrational spectroscopy of hydrous components. Rev Mineral, 18: 193–206

    Google Scholar 

  • Rossman G R. 1996. Studies of OH in nominally anhydrous minerals. Phys Chem Miner, 23: 299–304

    Article  Google Scholar 

  • Rossman G R. 2006. Analytical methods for measuring water in nominally anhydrous minerals. Rev Mineral Geochem, 62: 1–28

    Article  Google Scholar 

  • Rudnick R L, McDonough W F, O’Connell R J. 1998. Thermal structure, thickness and composition of continental lithosphere. Chem Geol, 143: 395–411

    Article  Google Scholar 

  • Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 419: 451–455

    Article  Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: 469–484

    Article  Google Scholar 

  • Sambridge M, Gerald J F, Kovács I, O’Neill HSt C, Hermann J. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development. Am Miner, 93: 751–764

    Article  Google Scholar 

  • Schmädicke E, Gose J, Will T M. 2011. Heterogeneous mantle underneath the North Atlantic: Evidence from water in orthopyroxene, mineral composition and equilibrium conditions of spinel peridotite from different locations at the Mid-Atlantic Ridge. Lithos, 125: 308–320

    Article  Google Scholar 

  • Shearer C K, Hess P C, Wieczorek M A, Pritchard M E, Parmentier E M, Borg L E, Longhi J, Elkins-Tanton L T, Neal C R, Antonenko I, Canup R M, Halliday A N, Grove T L, Hager B H, Lee D C, Wiechert U. 2006. Thermal and magmatic evolution of the Moon. Rev Mineral Geochem, 60: 365–518

    Article  Google Scholar 

  • Sheppard S M F, Epstein S. 1970. D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth Planet Sci Lett, 9: 232–239

    Article  Google Scholar 

  • Shimizu N, Hart S R. 1982. Applications of the ion microprobe to geochemistry and cosmochemistry. Ann Rev Earth Planet Sci, 10: 483–526

    Article  Google Scholar 

  • Sjöberg L E, Pan M, Asenjo E, Erlingsson S. 2000. Glacial rebound near Vatnajökull, Iceland, studied by GPS campaigns in 1992 and 1996. J Geodyn, 29: 63–70

    Article  Google Scholar 

  • Skogby H, Bell D R, Rossman G R. 1990. Hydroxide in pyroxene: Variations in the natural environment. Am Miner, 75: 764–774

    Google Scholar 

  • Skogby H. 2006. Water in natural mantle minerals I: Pyroxenes. Rev Mineral Geochem, 62: 155–167

    Article  Google Scholar 

  • Smith T I. 2002. The source issue in infrared microspectroscopy. Nucl Instrum Methods Phys Res A, 483: 565–570

    Article  Google Scholar 

  • Smyth J R, Frost D J, Nestola F, Holl C M, Bromiley G. 2006. Olivine hydration in the deep upper mantle: Effects of temperature and silica activity. Geophys Res Lett, 33: L15301, doi: 10.1029/2006GL026194

    Article  Google Scholar 

  • Smyth J R, Holl C M, Frost D J, Jacobsen S D, Langenhorst F, Mc Cammon C A. 2003. Structural systematics of hydrous ringwoodite and water in Earth’s interior. Am Miner, 88: 1402–1407

    Article  Google Scholar 

  • Sokol A G, Kupriyanov I N, Palyanov Y N. 2013. Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400°C: Implications for kimberlite formation. Earth Planet Sci Lett, 383: 58–67

    Article  Google Scholar 

  • Stolper E, Sherman S, Garcia M, Baker M, Seaman C. 2004. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosys, 5: Q07G15, doi: 10.1029/2003GC000553

    Article  Google Scholar 

  • Su W, Ji Z P, Ye K, You Z D, Liu J B, Yu J, Cong B L. 2004. Distribution of hydrous components in jadeite of the Dabie Mountains. Earth Planet Sci Lett, 222: 85–100

    Article  Google Scholar 

  • Sundvall R, Stalder R. 2011. Water in upper mantle pyroxene megacrysts and xenocrysts: A survey study. Am Miner, 96: 1215–1227

    Article  Google Scholar 

  • Thomas S-M, Koch-Müller M, Reichart P, Rhede D, Thomas R, Wirth R, Matsyuk S. 2009. IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Phys Chem Miner, 36:489–509

    Article  Google Scholar 

  • Trail D, Thomas J B, Watson E B. 2011. The incorporation of hydroxyl into zircon. Am Miner, 96: 60–67

    Article  Google Scholar 

  • Wade J A, Plank T, Hauri E H, Kelley K A, Roggensack K, Zimmer M. 2008. Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts. Geology, 36: 799–802

    Article  Google Scholar 

  • Walker R J, Carlson R W, Shirey S B, Boyd F R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta, 53: 1583–1595

    Article  Google Scholar 

  • Warren J M, Hauri E H. 2014. Pyroxenes as tracers of mantle water variations. J Geophys Res, 119: 1851–1881

    Article  Google Scholar 

  • Waters L E, Lange R A. 2015. An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Miner, 100: 2172–2184

    Article  Google Scholar 

  • Weis F A, Skogby H, Troll V R, Deegan F M, Dahren B. 2015. Magmatic water contents determined through clinopyroxene: Examples from the Western Canary Islands, Spain. Geochem Geophys Geosyst, 16, doi: 10.1002/2015GC005800

  • Withers A C, Bureau H, Raepsaet C, Hirschmann M M. 2012. Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem Geol, 334: 92–98

    Article  Google Scholar 

  • Withers A C. 2013. On the use of unpolarized infrared spectroscopy for quantitative analysis of absorbing species in birefringent crystals. Am Miner, 98: 689–697

    Article  Google Scholar 

  • Woods S C, Mackwell S, Dyar D. 2000. Hydrogen in diopside: Diffusion profiles. Am Miner, 85: 480–487

    Article  Google Scholar 

  • Xia Q K, Hao Y T, Liu S C, Gu X Y, Feng M. 2013b. Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China craton: Peridotite xenolith constraints. Gondwana Res, 23: 108–118

    Article  Google Scholar 

  • Xia Q-K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 115: B07207, doi: 10.1029/2009JB006694.

    Article  Google Scholar 

  • Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013a. High water content in Mesozoic primitive basalts of the North China Craton and implications for the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 2013, 361: 85–97

    Article  Google Scholar 

  • Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302

    Article  Google Scholar 

  • Yamamoto J, Ando J I, Kagi H, Inoue T, Yamada A, Yamazaki D, Irifune T. 2008. In situ strength measurements on natural upper-mantle minerals. Phys Chem Miner, 35: 249–257

    Article  Google Scholar 

  • Yang X Z, Xia Q K, Deloule E, Dallai L, Fan Q C, Feng M. 2008. Water in minerals of the continental lithospheric mantle and overlying lower crust: A comparative study of peridotite and granulite xenoliths from the North China craton. Chem Geol, 256: 33–45

    Article  Google Scholar 

  • Yu H, Xia Q, Deloule E, Yang X. 2005. Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from Nushan volcano, SE China. Acta Geol Sin, 79: 336–342

    Article  Google Scholar 

  • Yu Y, Xu X S, Griffin W L, O’Reilly S Y, Xia Q K. 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 126: 182–197

    Article  Google Scholar 

  • Yurimoto H, Kurosawa M, Sueno S. 1989. Hydrogen analysis in quartz crystals and quartz glasses by secondary ion mass spectrometry. Geochim Cosmochim Acta, 53: 751–755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HeJiu Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, H., Xu, Y. & Pan, M. On water in nominally anhydrous minerals from mantle peridotites and magmatic rocks. Sci. China Earth Sci. 59, 1157–1172 (2016). https://doi.org/10.1007/s11430-016-5308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5308-6

Keywords

Navigation