Skip to main content
Log in

Structure of cephalic ganglia and their changes in the post-embryonic development of Calliphora vomitoria (L.) (Diptera, Calliphoridae)

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The central nervous system of Calliphora vomitoria larvae is situated in the metathoracic and the first abdominal segments and is characterized by a high degree of oligomerization. It consists of only two ganglia: the supraoesophageal ganglion, or brain, and one large synganglion, a product of fusion of the suboesophageal ganglion, three thoracic, and all the abdominal ganglia. Weak development of the neuropil of the larval optic and olfactory lobes in the supraoesophageal ganglion is the result of a significant reduction of the head capsule and sensory organs in the larvae. The formation of the imaginal optic lobes begins at the III larval instar. The commissure of the future central body is present in the I instar larva, but formation of the imaginal structure of the central complex proceeds in the 3-day pupae and ends at the late pupal stage. The mushroom bodies are represented in the I instar larvae only by the pedunculi; the calyces can be distinguished in the II instar larvae but the final formation of their structure and the lobes of the imaginal type occurs at the pupal stage. The glomeruli in the deutocerebrum are also formed at a late stage of pupal development. Based on the degree of development of ganglia of the central nervous system, we can conclude that individual development of higher Diptera is characterized by deep de-embryonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boleli, I.C., Paulino-Simões, Z.L., and Costa Teles, M., “Neurosecretory Cells of Third-Instar Larvae of Anastrepha obliqua Macquart (Diptera, Tephritidae),” Revista Brasileira de Zoologia 11 (4), 673–682 (1994).

    Article  Google Scholar 

  2. Chaika, S.Yu., Insect Neuromorphology (Tipografiya Rosselkhozakademii, Moscow, 2010) [in Russian].

    Google Scholar 

  3. Fraser, A., “Neurosecretory Cells in the Abdominal Ganglia of Larvae of Lucilia caesar (Diptera),” Journal of Cell Science s3-100 (51), 395–400 (1959).

  4. Gundersen, R.W. and Larsen, J.R., “Postembryonic Development of the Optic Lobes of Phormia regina Meigen (Diptera: Calliphoridae),” International Journal of Insect Morphology and Embryology 7 (2), 121–136 (1978a).

    Article  Google Scholar 

  5. Gundersen, R.W. and Larsen, J.R., “Postembryonic Development of the Lateral Protocerebral Lobes, Corpora Pedunculata, Deutocerebrum and Tritocerebrum of Phormia regina Meigen (Diptera: Calliphoridae),” International Journal of Insect Morphology and Embryology 7 (5/6), 467–477 (1978b).

    Article  Google Scholar 

  6. Helfrich-Förster, C., Edwards, T., Yasuyama, K., Wisotzki, B., Schneuwly, S., Stanewsky, R., and Hofbauer, A., “The Extraretinal Eyelet of Drosophila: Development, Ultrastructure, and Putative Circadian Function,” Journal of Neuroscience 22 (21), 9255–9266 (2002).

    PubMed  Google Scholar 

  7. Hinke, W., “Das relative postembryonale Wachstum der Hirnteile von Culex pipiens, Drosophila melanogaster und Drosophila-Mutanten,” Zeitschrift für Morphologie und Ökologie der Tiere 50, 81–118 (1961).

    Article  Google Scholar 

  8. Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D., “The Drosophila Mushroom Body is a Quadruple Structure of Clonal Units Each of Which Contains a Virtually Identical Set of Neurons and Glial Cells,” Development 124, 761–771 (1997).

    CAS  PubMed  Google Scholar 

  9. Krivosheina, N.P., Ontogeny and Evolution of the Diptera (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  10. Lee, T., Lee, F., and Luo, L., “Development of the Drosophila Mushroom Bodies: Sequential Generation of Three Distinct Types of Neurons from a Neuroblast,” Development 126, 4065–4076 (1999).

    CAS  PubMed  Google Scholar 

  11. Nassif, C., Noveen, A., and Hartenstein, V., “Early Development of the Drosophila Brain: III. The Pattern of Neuropile Founder Tracts during the Larval Period,” Journal of Comparative Neurology 455 (4), 417–434 (2003).

    Article  PubMed  Google Scholar 

  12. Ohlsson, L.G. and Nassel, D.R., “Postembryonic Development of Serotonin-Immunoreactive Neurons in the Central Nervous System of the Blowfly, Calliphora erythrocephala. I. The Optic Lobes,” Cell and Tissue Research 249, 669–679 (1987).

    Article  Google Scholar 

  13. Osborne, M.P., “The Fine Structure of Synapses and Tight Junctions in the Central Nervous System of the Blowfly Larva,” Journal of Insect Physiology 12, 1503–1512 (1966).

    Article  CAS  PubMed  Google Scholar 

  14. Panov, A.A., “Structure of the Insect Brain at Consecutive Stages of Postembryonic Development,” Entomologicheskoe Obozrenie 36 (2), 269–284 (1957).

    Google Scholar 

  15. Panov, A.A., “Structure of the Insect Brain at Consecutive Stages of Postembryonic Development. II. The Central Body,” Entomologicheskoe Obozrenie 38 (2), 301–310 (1959).

    Google Scholar 

  16. Panov, A.A., “Structure of the Insect Brain at Consecutive Stages of Postembryonic Development. III. The Optic Lobes,” Entomologicheskoe Obozrenie 39 (1), 86–105 (1960).

    Google Scholar 

  17. Panov, A.A., “How Many Neuroblasts Form the Mushroom Bodies in the Common Green Bottle Fly Lucilia caesar L. and the House Fly Musca domestica L. (Insecta, Diptera, Brachycera Cyclorrhapha)?” Izvestiya Rossiiskoi Akademii Nauk. Seriya Biologiya, No. 6, 703–713 (2009).

    Google Scholar 

  18. Panov, A.A., “Variation in the Number of Neuroblasts Forming the Mushroom Bodies of Higher Dipterans (Insecta, Diptera, Brachycera Cyclorrhapha),” Izvestiya Rossiiskoi Akademii Nauk. Seriya Biologiya, No. 1, 90–95 (2011).

    Google Scholar 

  19. Prokop, A., and Meinertzhagen, I.A., “Development and Structure of Synaptic Contacts in Drosophila,” Seminars in Cell & Developmental Biology 17, 20–30 (2006).

    Article  CAS  Google Scholar 

  20. Shirokov, V.N., “Structure of the Cephalic Ganglia of the IIInstar Larva of Calliphora vomitoria (L.) (Diptera, Calliphoridae),” in Basic and Applied Research: Problems and Results. Proceedings of the XXII International Conference (Novosibirsk, 2015a), pp. 22–27.

    Google Scholar 

  21. Shirokov, V.N., “Ultrastructure of the Synganglion of the II Instar Larva of Calliphora vomitoria (L.) (Diptera, Calliphoridae),” in Advances in Science and Practice: Hypotheses and Assessment. Proceedings of the XXInternational Conferencev, Ed. by S.S. Cherno (Novosibirsk, 2015b), pp. 10–13.

    Google Scholar 

  22. Shirokov, V.N. and Chaika, S.Yu., “Structure of the Cephalic Ganglion in the Larvae and Pupae of the Tortrix Moth Archips podana Scopoli (Lepidoptera, Tortricidae),” Entomologicheskoe Obozrenie 93 (2), 390–402 (2014) [Entomological Review 94 (9), 1239–1250 (2014)].

    Google Scholar 

  23. Singh, Y.N. and Singh, M., “Structure and Metamorphic Changes in the Brain of the Flesh Fly Sarcophaga ruficornis Fabr. (Diptera: Sarcophagidae),” Journal für Hirnforschung 21, 187–197 (1980).

    CAS  PubMed  Google Scholar 

  24. Singh, Y.N. and Srivastava, U.S., “Histomorphological Changes in the Brain and Nerve Cord of the Indian Wasp Polistes hebraeus Fabr. (Hymenoptera: Vespidae) during Metamorphosis,” Zeitschrift für Morphologie und Ökologie der Tiere 75, 125–135 (1973).

    Article  Google Scholar 

  25. Sinitsina, E.E. and Chaika, S.Yu., Electron Microscopy of Chemoreceptor Organs of Insects: an Atlas (Tipografiya Rosselkhozakademii, Moscow, 2006) [in Russian].

    Google Scholar 

  26. Sprecher, S.G., Cardona, A., and Hartenstein, V., “The Drosophila Larval Visual System: High-Resolution Analysis of a Simple Visual Neuropile,” Developmental Biology 358 (1), 33–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Strausfeld, N.J., Sinakevitch, I., and Vilinsky, I., “The Mushroom Bodies of Drosophila melanogaster: an Immunocytological and Golgi Study of Kenyon Cell Organization in the Calyces and Lobes,” Microscopy Research Technique 62, 151–169 (2003).

    Article  PubMed  Google Scholar 

  28. Tettamanti, M., Armstrong, J.D., Endo, K., Yang, M.Y., Furukubo-Tokunaga, K., Kaiser, K., and Reichert, H., “Early Development of the Drosophila Mushroom Bodies, Brain Centers for Associative Learning and Memory,” Development, Genes and Evolution 207, 242–252 (1997).

    Article  Google Scholar 

  29. Vinogradova, E.B., The Blue Bottle Fly Calliphora vicina as a Model Object in Physiological and Ecological Research (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  30. Wegerhoff, R. and Breidbach, O., “Structure and Development of the Larval Central Complex in a Holometabolous Insects, the Beetle Tenebrio molitor,” Cell and Tissue Research 268, 341–358 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shirokov.

Additional information

Original Russian Text © V.N. Shirokov, S.Yu. Chaika, 2017, published in Entomologicheskoe Obozrenie, 2017, Vol. 96, No. 1, pp. 75–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, V.N., Chaika, S.Y. Structure of cephalic ganglia and their changes in the post-embryonic development of Calliphora vomitoria (L.) (Diptera, Calliphoridae). Entmol. Rev. 97, 171–182 (2017). https://doi.org/10.1134/S001387381702004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001387381702004X

Navigation