Skip to main content
Log in

Construction of the Optimal Trajectories for the Earth–Asteroid–Earth Mission under High-Thrust Flight

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The optimal trajectories of the mission to the “hazardous” asteroid Apophis, designed to study the asteroid, taking samples of its soil and returning to the Earth, are constructed and analyzed. The scheme of transfer with applying chemical “high”-thrust jet propulsion systems is used. For the transfer to the asteroid in 2019–2022, with the total mission duration being up to two years, the optimal-in-payload-mass, three-impulse trajectories of spacecraft, are obtained. The principal possibility of accomplishing the Earth–Apophis–Earth space mission, based on launch vehicles (LVs) of “Soyuz” type and “Fregat” upper stage, during the transfer in 2019–2022, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Atkins, K.L., Brownlee, D.E., Duxbury, T., et al., STARDUST: Discovery’s InterStellar dust and cometary sample return mission, 1997 IEEE Aerospace Conference, IEEE, 1997, vol. 4, pp. 229–245.

  2. Sandford, S.A., The power of sample return missions–Stardust and Hayabusa, Proceedings of the International Astronomical Union Symposium, 2011, vol. 280, pp. 275–287.

  3. Ajluni, T., Everett, D., Linn, T., et al., OSIRIS-REx, returning the asteroid sample, 2015 IEEE Aerospace Conference, IEEE, 2015, pp. 1–15.

  4. Asteroido-kometnaya opasnost’: vchera, segodnya, zavtra (Asteroid–Comet Hazard: Yesterday, Today, and Tomorrow), Shustov, B.M. and Rykhlova, L.V., Eds., Moscow: Fizmatlit, 2010.

    Google Scholar 

  5. Sokolov, L.L., Bashakov, A.A., Borisova, T.P., et al., Impact trajectories of the asteroid Apophis in the 21st century, Sol. Syst. Res., 2012, vol. 46, no. 4, pp. 291–300.

    Article  ADS  Google Scholar 

  6. Avtomaticheskie kosmicheskie apparaty dlya fundamental’nykh i prikladnykh nauchnykh issledovanii (Automatic Spacecraft for Basic and Applied Scientific Research), Polishchuk, G.M. and Pichkhadze, K.M., Eds., Moscow: MAI, 2010.

    Google Scholar 

  7. Ivashkin, V.V. and Lang, A., Optimal space trajectories for the Earth–Apophis–Earth mission using high thrust engines, Kosmonavt. Raketostr., 2017, no. 5, pp. 63–71.

  8. Ivashkin, V.V. and Lang, A., Optimum trajectories for an Earth–asteroid–Earth mission with a high thrust flight, Dokl. Phys., 2019, vol. 64, no. 1, pp. 14–19.

    Article  ADS  Google Scholar 

  9. Hohmann, W., Die Erreichbarkeit der Himmelskörper, München–Berlin: R. Oldenbourg, 1926.

    Google Scholar 

  10. Tsiolkovsky, K.E., World space research using jet vehicles (1911–1912), Pionery raketnoi tekhniki. Kibal’chich. Tsiolkovsky. Tsander. Kondratyuk. Izbrannye trudy (The Pioneers of Rocket Engineering: Kibal’chich, Tsiolkovsky, Tsander, and Kondratyuk. Selected Works), Moscow: Nauka, 1964.

    Google Scholar 

  11. Lang, A., Analysis of spacecraft trajectories for the space mission Earth–Apophis–Earth and the spacecraft orbital motion around the asteroid Apophis, Inzh. Zh.: Nauka Innovatsii, 2017, no. 7.

  12. Ivashkin, V.V., Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rasstoyaniya do planet (Optimization of Space Maneuvers with Limited Distances to the Planets), Moscow: Nauka, 1975.

  13. Il’in, V.A. and Kuzmak, G.E., Optimal’nye perelety kosmicheskikh apparatov s dvigatelyami bol’shoi tyagi (Optimal Transfer Orbits of Spacecraft with High Thrust Engines), Moscow: Nauka, 1976.

  14. Kubasov, V.N. and Dashkov, A.A., Mezhplanetnye polety (Interplanetary Flights), Moscow: Mashinostroenie, 1979.

  15. Sobol’, I.M. and Statinkov, R.B., Vybor optimal’nykh parametrov v zadachakh so mnogimi kriteriyami (Choice of Optimal Parameters for Multiple Criteria Problems), Moscow: Nauka, 1981.

  16. Numerical Recipes in C: The Art of Scientific Computing, Press, W.H., Teukolsky, S.A., Vetterling, W.T., , Eds., Cambridge University Press, 1992.

    MATH  Google Scholar 

  17. Sobol’, I.M., Asotsky, D., Kreinin, A., et al., Construction and comparison of high-dimensional Sobol’ generators, Wilmott J., 2012, vol. 2011, no. 56, pp. 64–79.

    Article  Google Scholar 

  18. Panchenko, T.V., Geneticheskie algoritmy: uchebno-metodicheskoe posobie (Genetic Algorithms: A Study Guide), Astrakhan: Astrakhanskii univ., 2007.

  19. Nocedal, J. and Wright, S.J., Numerical Optimization, New York: Springer, 2006.

    MATH  Google Scholar 

  20. Ivashkin, V.V. and Lang, A., Trajectory optimality analysis for the Earth–asteroid–Earth mission, Preprint of Keldysh Institute of Applied Mathematics, Russ. Acad. Sci., Moscow, 2017, no. 113. https://doi.org/10.20948/prepr-2017-113

  21. Lawden, D.F., Optimal Trajectories for Space Navigation, London: Butterworths, 1963.

    MATH  Google Scholar 

  22. Charnyi, V.I., On isochronous derivatives, Iskusstvennye sputniki Zemli (Artificial Earth Satellites), Moscow: Akad. Nauk SSSR, 1963, vol. 16, pp. 65–79.

    Google Scholar 

  23. Pines, S., Constants of the motion for optimum thrust trajectories in a central force field, AIAA J., 1964, vol. 2, no. 11, pp. 2010–2014.

    Article  ADS  MathSciNet  Google Scholar 

  24. Lion, P.M. and Handelsman, M., Primer vector on fixed-time impulsive trajectories, AIAA J., 1968, vol. 6, no. 1, pp. 127–132.

    Article  ADS  Google Scholar 

  25. Jezewski, D.J. and Rozendaal, H.L., An efficient method for calculating optimal free-space N-impulse trajectories, AIAA J., 1968, vol. 6, no. 11, pp. 2160–2165.

    Article  ADS  Google Scholar 

  26. Robbins, H.M., An analytical study of the impulsive approximation, AIAA J., 1966, vol. 4, no. 8, pp. 1417–1423.

    Article  ADS  Google Scholar 

  27. Zakharov, Yu. A., Proektirovanie mezhorbital’nykh kosmicheskikh apparatov (Design of Interorbital Space Vehicles), Moscow: Mashinostroenie, 1984.

  28. Khokhulin, V.S. and Chumakov, V.A., Proektirovanie kosmicheskikh razgonnykh blokov s ZhRD (Design of Space Accelerating Blocks with Liquid Rocket Engines), Moscow: MAI, 2000.

  29. Bychkov, A.D. and Ivashkin, V.V., Design and ballistic analysis of a reusable Earth–Moon–Earth transportation system based on nuclear thermal rocket engine, Kosmonavt. Raketostr., 2014, no. 1, pp. 68–76.

  30. Abbasov, M.E., Metody optimizatsii (Optimization Methods), St. Petersburg: VVM, 2014.

Download references

ACKNOWLEDGMENTS

In conclusion, the authors express their sincere gratitude to the staff of S.A. Lavochkin RPA: Ph. D. V.G. Paul and Ph. D. A.V. Simonov, as well as to Ph. D. I.V. Krylov for support and useful discussions of the study, as well as to participants of the V.A. Egorov seminar at the M.V. Lomonosov Moscow State University for very useful discussions of the problem and this study. The authors are grateful to graduate student Guo Peng for his help in improving the computer program and in performing calculations. V.V. Ivashkin thanks Prof. J. Martinez-Garcia, Dr. M. Bello-Mora, Dr. E. Revilla-Pedreira, Prof. P. Sanz-Arangues and Prof. T. Elices (GMV, Madrid Polytechnic University) for their support in studying the problem of flight to small celestial bodies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Ivashkin or Anqi Lan.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashkin, V.V., Lan, A. Construction of the Optimal Trajectories for the Earth–Asteroid–Earth Mission under High-Thrust Flight. Cosmic Res 58, 111–121 (2020). https://doi.org/10.1134/S0010952520020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520020057

Navigation