Skip to main content
Log in

Features of solar wind streams on June 21–28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Сorrespondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denton, M.H., Borovsky, J.E., Skoug, R.M., et al., Geomagnetic storms driven by ICME- and CIR-dominated solar wind, J. Geophys. Res., 2006, vol. 111, A07S07.

    Article  Google Scholar 

  2. Xystouris, G., Sigala, E., and Mavromichalaki, H., A complete catalogue of high-speed solar wind streams during solar cycle 23, Sol. Phys., 2014, vol. 289, no. 3, pp. 995–1012.

    Article  ADS  Google Scholar 

  3. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 9, pp. 7094–7106.

    Article  ADS  Google Scholar 

  4. Webb, D.F. and Howard, T.A., Coronal mass ejections. Observations, Living Rev. Sol. Phys., 2012, vol. 9, id 3.

    Article  ADS  Google Scholar 

  5. Richardson, I.G. and Cane, H.V., Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009). Catalog and summary of properties, Sol. Phys., 2010, vol. 264, no. 1, pp. 189–237.

    Article  ADS  Google Scholar 

  6. Gopalswamy, N., Makela, P., Xie, H., et al., CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res., 2009, vol. 114, A00A22.

    Google Scholar 

  7. Lugaz, N. and Farrugia, C.J., A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness, Geophys. Res. Lett., 2014, vol. 41, no. 3, pp. 769–776.

    Article  ADS  Google Scholar 

  8. Prise, A.J., Harra, L.K., Matthews, S.A., et al., Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 3, pp. 1566–1588.

    Article  ADS  Google Scholar 

  9. Mishra, W., Srivastava, N., and Chakrabarty, D., Evolution and consequences of interacting CMEs of 9–10 November 2012 using STEREO SECCHI and in situ observations, Sol. Physv., 2015, vol. 290, no. 2, pp. 527–552.

    Article  ADS  Google Scholar 

  10. Zhao, L., Zurbuchen, T.H., and Fisk, L.A., Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Res. Lett., 2009, vol. 36, L14104.

    Article  ADS  Google Scholar 

  11. Liu, Y.D., Hu, H., Wang, R., et al., Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability, Astrophys. J. Lett., 2015, vol. 809, no. 2, L34.

    Article  ADS  Google Scholar 

  12. Baker, D.N., Jaynes, A.N., Kanekal, S.G., et al., Highly relativistic radiation belt electron acceleration, transport, and loss. Large solar storm events of March and June 2015, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 7, pp. 6647–6660.

    Article  ADS  Google Scholar 

  13. Brueckner, G.E., Howard, R.A., Koomen, M.J., et al., The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 1995, vol. 162, nos. 1–2, pp. 357–402.

    Article  ADS  Google Scholar 

  14. Lemen, J.R., Title, A.M., and Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, nos. 1–2, pp. 17–40.

    Article  ADS  Google Scholar 

  15. Hill, S.M., Pizzo, V.J., Balch, C.C., et al., The NOAA Goes-12 Solar X-ray Imager (SXI)1. Instrument, operations, and data, Sol. Phys., 2005, vol. 226, no. 2, pp. 255–281.

    Article  ADS  Google Scholar 

  16. Pizzo, V.J., Hill, S.M., Balch, C.C., et al., The NOAA Goes-12 Solar X-ray Imager (SXI) 2. Performance, Sol. Phys., 2005, vol. 226, no. 2, pp. 283–315.

    Article  ADS  Google Scholar 

  17. McComas, D.J., Bame, S.J., Barker, P., et al., Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 1998, vol. 86, nos. 1–4, pp. 563–612.

    Article  ADS  Google Scholar 

  18. Gloecker, G., Cain, J., Ipavich, F.M., et al., Investigations of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 1998, vol. 86, nos. 1–4, pp. 497–539.

    Article  ADS  Google Scholar 

  19. Shugay, Yu.S., Veselovsky, I.S., Seaton, D.B., and Berghmans, D., Hierarchical approach to forecasting recurrent solar wind streams, Sol. Syst. Res., 2011, vol. 45, no. 6, pp. 546–556.

    Article  ADS  Google Scholar 

  20. Shugay, Yu., Slemzin, V., and Veselovsky, I., Magnetic field sector structure and origins of solar wind streams in 2012, J. Space Weather Space Clim., 2014, no. 4, A24.

    Article  ADS  Google Scholar 

  21. Shugay, Yu.S., Veselovsky, I.S., Slemzin, V.A., et al., Possible causes of the discrepancy between the predicted and observed parameters of high-speed solar wind streams, Cosmic Res., 2017, vol. 55, no. 1, pp. 20–29.

    Article  ADS  Google Scholar 

  22. Vršnak, B. and Žic, T., Transit times of interplanetary coronal mass ejections and the solar wind speed, Astron. Astrophys., 2007, vol. 472, no. 3, pp. 937–943.

    Article  ADS  Google Scholar 

  23. Vršnak, B., Žic, T., Vrbanec, D., et al., Propagation of interplanetary coronal mass ejections. The drag-based model, Sol. Phys., 2013, vol. 285, nos. 1–2, pp. 295–315.

    Article  ADS  Google Scholar 

  24. Zhao, L., Landi, E., Zurbuchen, T.H., et al., The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycles 23 to 24, Astrophys. J., 2014, vol. 793, no. 1, id 44.

    Article  ADS  Google Scholar 

  25. Rod’kin, D.G., Shugai, Yu.S., Slemzin, V.A., and Veselovskii, I.S., The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle, Sol. Syst. Res., 2016, vol. 50, no. 1, pp. 44–55.

    Article  ADS  Google Scholar 

  26. Zhao, L., Landi, E., Fisk, L.A., and Lepri, S.T., The coherent relation between the solar wind proton speed and O7+/O6+ ratio and its coronal sources, AIP Conf. Proc., 2016, vol. 1720, no. 1, 020007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Shugay.

Additional information

Original Russian Text © Yu.S. Shugay, V.A. Slemzin, D.G. Rod’kin, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 6, pp. 399–406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugay, Y.S., Slemzin, V.A. & Rod’kin, D.G. Features of solar wind streams on June 21–28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes. Cosmic Res 55, 389–395 (2017). https://doi.org/10.1134/S0010952517060107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517060107

Navigation