Skip to main content
Log in

Combustion and Thermal Decomposition of Solid Gas-Generating Compositions Based on High-Enthalpy Poly-N-Heterocyclic Compounds and Poly-2-Methyl-5-Vinyltetrazole

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents a study of the macrokinetic regularities of combustion and thermal decomposition kinetics of energetic condensed compositions containing high-enthalpy high-nitrogen compounds based on the system of furazan, furoxan, and azepine cycles and poly-2-methyl-5-vinyltetrazole as an active binder. The linear rates of high-temperature transformations (combustion) of compositions with different ratios of components were determined in the nitrogen pressure range 1–6 MPa. The burning rate of compositions of polycyclic compounds and poly-2-methyl-5-vinyltetrazole was found to exceed the burning rate of individual components, with the synergistic effect increasing as the nitrogen pressure in the system is decreased. Kinetic studies of heat release during thermal decomposition of energetic compositions in the temperature range 50–350°C under isothermal and nonisothermal conditions showed that in pressed compositions, there was interaction between the reactants leading to a significant increase in the rate of thermal decomposition of the mixture relative to the rate of decomposition of individual components. The data obtained indicate that one of the reasons for an increase in the burning rate upon mixing of components may be a change in the burning-rate controlling reactions due to the chemical interaction of components of the binary composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. M. B. Talawar, R. Sivabalan, M. Anniyappan, et al., “Emerging Trends in Advanced High Energy Materials," Fiz. Goreniya Vzryva 43 (1), 72–85 (2007); Combust. Expl. Shock Waves 43 (1),62–72 (2007); https://doi.org/10.1007/s10573-007-0010-9].

    Article  Google Scholar 

  2. M. A. Suntsova, “Prediction of Enthalpies of Formation of New Nitrogen-Containing Energetic Compounds Based on Quantum-Chemical Calculations," Candidate’s Dissertation in Chem. Sci. (Moscow State Univ., Moscow, 2016); http://www.dslib.net/ fiz-xim/prognozirovanie-jentalpij-obrazovanijanovyh-azotsoderzhawih-vysokojenergeticheskih.html.

  3. T. M. Klapotke, Energetic Materials Encyclopedia (De Gruyter, Berlin–Boston, 2018).

    Book  Google Scholar 

  4. S. G. Zlotin, A. M. Churakov, M. P. Egorov, L. L. Fershtat, M. S. Klenov, I. V. Kuchurov, N. N. Makhova, G. A. Smirnov, Y. V. Tomilov, and V. A. Tartakovsky, “Advanced Energetic Materials: Novel Strategies and Versatile Applications," Mendeleev Commun. 31 (6), 731–749 (2021); DOI: 10.1016/j.mencom.2021.11.001.

    Article  Google Scholar 

  5. A. A. Dippold, D. Izsák, and T. M. Klapötke, “A Study of 5-(1,2,4-Triazol-C-yl)tetrazol-1-Ols: Combining the Benefits of Different Heterocycles for the Design of Energetic Materials," Chem. Eur. J. 19 (36), 12042–12051 (2013); DOI: 10.1002/chem.201301339.

    Article  Google Scholar 

  6. T. M. Klapötke and T. G. Witkowski, “Nitrogen-Rich Energetic 1,2,5-Oxadiazole-Tetrazole–Based Energetic Materials," Propell., Explos., Pyrotech. 40 (3), 366–373 (2015); DOI: 10.1002/prep.201400294.

    Article  Google Scholar 

  7. V. P. Sinditskii, A. D. Smirnova, V. V. Serushkin, N. V. Yudin, I. A. Vatsadze, I. L. Dalinger, V. G. Kiselev, and A. B. Sheremetev, “Nitroderivatives of N-pyrazolyltetrazoles: Thermal Decomposition and Combustion," Thermochim. Acta 698, 178876 (2021); DOI: 10.1016/j.tca.2021.178876.

    Article  Google Scholar 

  8. H. Huang, Z. Zhou, L. Liang, J. Song, K. Wang, D. Cao, Ch. Bian, W. Sun, and M. Xue, “Nitrogen-Rich Energetic Dianionic Salts of 3,4-Bis(1H-5-tetrazolyl)furoxan with Excellent Thermal Stability," Z. Anorg. Allg. Chem. 638 (2), 392–400 (2012); DOI: 10.1002/zaac.201100470.

    Article  Google Scholar 

  9. A. A. Astrat’ev, D. V. Dashko, and A. I. Stepanov, “Unusual Reaction of 3,4-Bis(3-nitrofurazan-4-yl) Furoxan with Ammonia, Primary Amines and Hydrazine," Centr. Eur. J. Chem. 10 (4), 1087–1094 (2012); DOI: 10.2478/s11532-012-0020-7.

    Article  Google Scholar 

  10. L. S. Yanovskii, D. B. Lempert, V. V. Raznoschikov, and I. S. Averkov, “Evaluation of Effectiveness of Solid Fuels Based on High Enthalpy Dispersants for Rocket Ramjet Engines," Zh. Prikl. Khim. 92 (3), 322–342 (2019) [Russ. J. Appl. Chem. 92, 367–388 (2019); https://doi.org/10.1134/S1070427219030078].

    Article  Google Scholar 

  11. A. F. Zholudev, M. B. Kislov, I. S. Averkov, D. V. Dashko, V. V. Raznoschikov, D. B. Lempert, and L. S. Yanovskiy, “Features of Combustion of Gas-Generating Solid Compositions Based on High-Enthalpy Dispersants," Izv. Ross. Akad. Nauk, Ser. Khim. 70 (4), 685–692 (2021) [Russ. Chem. Bull. 70, 685–692 (2021); https://doi.org/10.1007/s11172-021-3137-z].

    Article  Google Scholar 

  12. N. N. Volkova, D. V. Dashko, A. F. Zholudev, M. B. Kislov, and L. S. Yanovskii, “Regularities of the High-Temperature Transformation of Poly-2-methyl-5-vinyltetrazole and Solid Fuel Compositions Based on It in the Nitrogen Atmosphere," J. Phys.: Conf. Ser. 1891, 012059 (2021); DOI: 10.1088/1742-6596/1891/1/012059.

    Article  Google Scholar 

  13. B. V. Nedel’ko, B. P. Roshchupkin, T. S. Larikova, L. N. Shumakova, N. A. Afanas’ev, B. L. Korsunskii, N. A. Pavlov, E. V. Fronchek, and G. V. Korolev, “Thermal Destruction of Poly-2-methyl-5-vinyltetrazole," Vysokomol. Soed. B28 (9), 681–686 (1986).

    Google Scholar 

  14. D. R. Cruise, “Theoretical Computations of Equilibrium Compositions, Thermodynamic Properties, and Performance Characteristics of Propellant Systems," Report No. NWC-TP-6037 (Naval Weapons Center, China Lake, 1979).

  15. C. Fang and S. Li, “Synergistic Interaction between AP and HMX," J. Energ. Mater. 20 (4), 329–344 (2002); DOI: 10.1080/07370650208244827.

    Article  Google Scholar 

  16. A. N. Pivkina, N. V. Muravyev, K. A. Monogarov, V. G. Ostrovsky, I. V. Fomenkov, Yu. M. Milyokhin, and N. I. Shishov, Synergistic Effect of Ammonium Perchlorate on HMX: from Thermal Analysis to Combustion, Chemical Rocket Propulsion. A Comprehensive Survey of Energetic Materials, Ed. by L. De Luca, T. Shimada, V. Sinditskii, and M. Calabro (Springer, Switzerland, 2017), Chapter 15, pp. 365–381.

  17. B. V. Golovko, A. A. Kopeika, and E. A. Nikitina, “Features of Thermal Explosion with Parallel Reactions," Fiz. Aerodisp. Sist., No. 40, 64–70 (2003).

  18. N. M. Emanuel’ and D. G. Knorre, Course of Chemical Kinetics (Vysshaya Shkola, Moscow, 1969) [in Russian].

  19. A. I. Kazakov, D. B. Lempert, A. V. Nabatova, D. V. Dashko, V. V. Raznoschikov, L. S. Yanovsky, and S. M. Aldoshin, “Kinetic Fundamental Aspects of Heat Release in Thermal Decomposition 7-Amino-7H-difurazano[3,4-b:3′,4′- f]furoxano [3″,4″-d]azepine and Binary Fuel on Its Basis," Zh. Appl. Chem. 92 (S13), 1657–1665 (2019); DOI: 10.1134/S0044461819130036 [Russ. J. Appl. Chem. 92, 1696–1704 (2019); https://doi.org/10.1134/S1070427219120101].

    Article  Google Scholar 

  20. N. N. Volkova and V. G. Prokudin, “Kinetics and Mechanism of Thermal Decomposition of Poly-1(2)-methyl-5-vinyltetrazoles," in Abstracts XI Meetings on the Kinetics and Mechanism of Reactions in Solids, 1992, pp. 349–352.

  21. A. V. Zuraev, Yu. V. Grigor’ev, I. M. Grigor’eva, L. I. Pan’ko, L. S. Ivashkevich, A. S. Lyakhov, and O. A. Ivashkevich, “Synthesis and Thermolysis of Copper Poly-5-vinyl Tetrazolate," Zh. Belorus. Gos. Univ. Khim., No. 1, 67–75 (2018).

  22. A. I. Lesnikovich, V. V. Sviridov, P. N. Gaponik, V. P. Karavai, G. M. Tseloval’nikova, M. M. Degtyarik, and S. V. Vyazovkin, “Capability of High-Nitrogen Compounds for Self-Propagating Thermolysis," Dokl. Akad. Nauk BSSR 29 (9), 824–827 (1985).

    Google Scholar 

  23. O. A. Ivashkevich, Thermal Decomposition and Combustion of Tetrazole Derivatives, Chemical Problems of Designing New Materials and Technologies, Ed. by V. V. Sviridov (Belarus. Gos. Univ., Minsk, 1998), pp. 215–236.

    Google Scholar 

  24. A. I. Lesnikovich, G. V. Printsev, O. A. Ivashkevich, V. A. Lyutsko, and K. K. Kovalenko, “Tetrazole Combustion," Fiz. Goreniya Vzryva 24 (5), 48–51 (1988) [Combust. Expl. Shock Waves 24, 549–551 (1988); https://doi.org/10.1007/BF00755492].

    Article  Google Scholar 

  25. V. P. Sinditskii, V. Yu. Egoryshev, V. V. Serushkin, A. E. Fogel’zang, and V. I. Kolesov, “Combustion Mechanism of Tetrazole Derivatives," Khim. Fiz. 18 (8), 87–94 (1999).

    Google Scholar 

  26. P. I. Kalmykov, V. N. Simonenko, A. B. Kiskin, V. E. Zarko, K. A. Sidorov, and R. G. Nikitin, “Investigation of Combustion of Model Compositions Based on FTDO, DNP, and Tetrazole Copolymer," in Abstracts XV All-Russian Symp. on Combustion and Explosion (2020), Vol. 2, pp. 115–116

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Volkova.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 5-15.https://doi.org/10.15372/FGV20220401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, N.N., Dashko, D.V., Zholudev, A.F. et al. Combustion and Thermal Decomposition of Solid Gas-Generating Compositions Based on High-Enthalpy Poly-N-Heterocyclic Compounds and Poly-2-Methyl-5-Vinyltetrazole. Combust Explos Shock Waves 58, 397–407 (2022). https://doi.org/10.1134/S0010508222040013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222040013

Keywords

Navigation