Skip to main content

Abstract

Smoldering combustion is the slow, low temperature, flameless burning of porous fuels and is the most persistent type of combustion phenomena. It is especially common in porous fuels which form a char on heating, like cellulosic insulation, polyurethane foam or peat. Smoldering combustion is among the leading causes of residential fires, and it is a source of safety concerns in industrial premises as well as in commercial and space flights. Smoldering is also the dominant combustion phenomena in megafires in natural deposits of peat and coal which are the largest and longest burning fires on Eartht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pyrolysis in this context is the chemical decomposition of a solid material solely by heating. It does not involve oxidation reactions and it is endothermic. It involves the irreversible and simultaneous change of chemical composition and physical phase.

  2. 2.

    Oxidation in this context is the reaction of a species with the oxygen in the air. It is an exothermic reaction.

  3. 3.

    The onset of pyrolysis or oxidation does not occur at one fixed temperature but it is known to be a function of the heating rate and start over a range of temperatures; higher onset temperatures are observed for higher heating rates. See Rein et al. [15] and the section “Smoldering Kinetics” for evidence of this.

  4. 4.

    The surface-to-volume ratio of a sample is inversely proportional to its characteristic length (e.g., thickness for a very wide layer, diameter for a cylinder, side length for a prism or diameter for a sphere).

  5. 5.

    Avoidance of flaming re-ignition of a non-porous fuel requires cooling of the surface layer only.

  6. 6.

    The water content in dry basis is the mass of water divided by the mass of a dried sample expressed as a %.

  7. 7.

    The mineral content is the % of the fuel mass (on dry basis) that will not burn or react at high temperatures. It results in ash.

References

  1. TJ. Ohlemiller, “Modeling of Smoldering Combustion Propagation,” Progress in Energy and Combustion Science, 11, p. 277 (1985).

    Google Scholar 

  2. D. Drysdale, An Introduction to Fire Dynamics, 3rd ed. Wiley, UK, 2011.

    Google Scholar 

  3. M. Ahrens. U.S. Home Structure Fires, National Fire Protection Association Fire Analysis and Research, Quincy, MA April 2013.

    Google Scholar 

  4. J.R. Hall, The Smoking-Material Fire Problem, (Fire Analysis and Research Division of The National Fire Protection Association, November 2004, Massachusetts).

    Google Scholar 

  5. G Rein, Smouldering Fires and Natural Fuels, Chapter 2 in. Fire Phenomena in the Earth System – An Interdisciplinary Approach to Fire Science, C Belcher (editor). Wiley and Sons, 2013. http://dx.doi.org/10.1002/9781118529539.ch2

  6. T’ien, J.S., Shih, H., Jiang, C., Ross, H.D., Miller, F.J., Fernandez-Pello, A.C., Torero, J.L., and Walther, D.C., Mechanisms of Flame Spread and Smolder Wave Propagation, Chapter 5 in. Microgravity Combustion: Fire in Free Fall, H.D. Ross, Editor, Academic Press, 2001, pp. 299–417.

    Google Scholar 

  7. T. J. Ohlemiller, Smoldering Combustion, Chapter 9; Section 2; SFPE Handbook of Fire Protection Engineering. 3rd Edition, DiNenno, P. J.; Drysdale, D.; Beyler, C. L.; Walton, W. D., Editor(s), 2/200-210 p., 2002. http://fire.nist.gov/bfrlpubs/fire02/art074.html

  8. V. Babrauskas, Ignition Handbook, 2003 Fire Science Publishers, Issaquah WA, USA. ISBN-10: 0-9728111-3-3.

    Google Scholar 

  9. G Rein, Smouldering Combustion Phenomena in Science and Technology, International Review of Chemical Engineering, 1, 1, pp. 3–18, 2009.

    Google Scholar 

  10. TJ. Ohlemiller and W. Shaub, “Products of Wood Smolder and Their Relation to Wood-Burning Stoves,” NBSIR 88-3767, National Bureau of Standards, Washington, DC (1988). fire.nist.gov/bfrlpubs/fire88/PDF/f88017.pdf

    Google Scholar 

  11. J. Beard, Ground Zero’s fires still burning, 3 December 2001, New Scientist, New York. http://www.newscientist.com/article/dn1634-ground-zeros-fires-still-burning.html

  12. CD Ellyett, Fleming, A.W. (1974) Thermal infrared imagery of The Burning Mountain coal fire. Remote Sensing of Environment 3: 79–86; doi: 10.1016/0034-4257(74)90040-6.

    Article  Google Scholar 

  13. C. Switzer, P Pironi, G Rein, JL Torero, JI Gerhard, Self-Sustaining Smoldering Combustion: A Novel Remediation Process for Non-Aqueous-Phase Liquids in Porous Media, Environmental Science and Technology 43, pp. 5871–5877, 2009. doi: 10.1021/es803483s.

    Google Scholar 

  14. J. Torero and C. Fernandez-Pello, Forward Smolder of Polyurethane Foam in a Forced Air Flow, Combustion and Flame, 106, pp. 89–109 (1996).

    Article  Google Scholar 

  15. G Rein, C Lautenberger, AC Fernandez-Pello, JL Torero, DL. Urban, Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion, Combustion and Flame 146 (1-2), pp 95–108, 2006. doi:10.1016/j.combustflame.2006.04.013.

    Google Scholar 

  16. G Rein, AC Fernandez-Pello, DL Urban, Computational Model of Forward and Opposed Smoldering Combustion in Microgravity, Proceedings of the Combustion Institute 31 (2), pp. 2677–2684, 2007. doi:10.1016/j.proci.2006.08.047.

    Article  Google Scholar 

  17. TJ. Ohlemiller and D. Lucca, “An Experimental Comparison of Forward and Reverse Smolder Propagation in Permeable Fuel Beds,” Combustion and Flame, 54, p. 131 (1983).

    Google Scholar 

  18. M. Ortiz-Molina, T-Y. Toong, N. Moussa, and G. Tesoro, 17th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1979).

    Google Scholar 

  19. R Hadden, A Alkatib, G Rein, JL Torero, Radiant Ignition of Polyurethane Foam: the Effect of Sample Size, Fire Technology 50 (3), pp. 673–691 (2014) doi:10.1007/s10694-012-0257-x.

    Google Scholar 

  20. M. Anderson, R. Sleight, and J. Torero, “Downward Smolder of Polyurethane Foam: Ignition Signatures,” Fire Safety Journal, 35, pp. 131–147 (2000).

    Article  Google Scholar 

  21. R. Anthenien and C. Fernandez-Pello, A Study of Forward Smolder Ignition of Polyurethane Foam, Proceedings 27th Symposium (International) on Combustion, Vol. 2, Combustion Institute, Pittsburgh, PA, pp. 2683–2690 (1998).

    Google Scholar 

  22. R Hadden, G Rein, Burning and Suppression of Smouldering Coal Fires, Chapter 18 in. Coal and Peat Fires: A Global Perspective, Volume 1, pp. 317–326, Stracher, Prakash and Sokol (editors), Elsevier Geoscience, 2011. ISBN 9780444528582. doi: 10.1016/B978-0-444-52858-2.00018-9.

    Google Scholar 

  23. Manzello, S. L.; Cleary, T. G.; Shields, J. R.; Maranghides, A.; Mell, W. E.; Yang, J. C., Experimental Investigation of Firebrands: Generation and Ignition of Fuel Beds, Fire Safety Journal, Vol. 43, No. 3, 226–233, April 2008.

    Google Scholar 

  24. R Hadden, S Scott, C Lautenberger and AC Fernandez-Pello, Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study, Fire Technology 47 (2), pp. 341–355, 2011, doi:10.1007/s10694-010-0181-x

    Article  Google Scholar 

  25. U Krause, Schmidt M (2000) Propagation of smouldering in dust deposits caused by glowing nests or embedded hot bodies. J Loss Prev Process Indus 13(3-5):319–326. doi:10.1016/S0950-4230(99)00031-5

    Google Scholar 

  26. P. Bowes, Self-Heating: Evaluating and Controlling the Hazards, Elsevier, New York, Chap. 7 (1984).

    Google Scholar 

  27. K. Palmer, “Smoldering Combustion in Dusts and Fibrous Materials,” Combustion and Flame, 1, p. 129 (1957).

    Article  Google Scholar 

  28. TJ. Ohlemiller and F. Rogers, “Cellulosic Insulation Material II. Effect of Additives on Some Smolder Characteristics,” Combustion Science and Technology, 24, p. 139 (1980).

    Google Scholar 

  29. A. Bar Ilan, Rein G, Fernandez Pello AC, Torero JL, Urban DL (2004a) Forced forward smoldering experiments in microgravity. Exper Thermal and Fluid Science 28 (7):743–751. doi:10.1016/j.expthermflusci.2003.12.012

    Article  Google Scholar 

  30. A. Bar Ilan, Rein G, Walther DC, Fernandez Pello AC, Torero JL, Urban DL (2004b) The effect of buoyancy on opposed smoldering. Combust Sci Technol 176(12):2027–2055. doi:10.1080/00102200490514822

    Article  Google Scholar 

  31. X Huang, G Rein, “Smouldering Combustion of Peat in Wildfires: Inverse Modelling of the Drying and the Thermal and Oxidative Decomposition Kinetics,” Combustion and Flame 161 (6), pp. 1633–1644, 2014. doi:10.1016/j.combustflame.2013.12.013.

    Google Scholar 

  32. TJ. Ohlemiller, “Smoldering Combustion Propagation Through a Permeable Horizontal Fuel Layer,” Combustion and Flame, 81, p. 341 (1990a).

    Google Scholar 

  33. J. Brenden and E. Schaffer, “Wavefront Velocity in Smoldering Fiberboard,” Research Paper FPL 367, U.S. Forest Products Laboratory (1980).

    Google Scholar 

  34. T. Kinbara, H. Endo, and S. Sega, Proceedings of the Combustion Institute, p. 525 (1967).

    Google Scholar 

  35. A. Egerton, K. Gugan, and F. Weinberg, “The Mechanism of Smoldering in Cigarettes,” Combustion and Flame, 7, p. 63 (1963).

    Article  Google Scholar 

  36. D. Donaldson and D. Yeadon, “Smoldering Phenomena Associated with Cotton,” Textile Research Journal, March, p. 160, (1983).

    Google Scholar 

  37. W. Stiefel, R. Bukowski, J. Hall, and F. Clarke, “Fire Risk Assessment Method: Case Study 1, Upholstered Furniture in Residences,” NISTIR 90-4243, National Institute of Standards and Technology, Gaithersburg, MD (1990).

    Google Scholar 

  38. Bjarne C. Hagen, Vidar Frette, Gisle Kleppe, Bjørn J. Arntzen, Onset of smoldering in cotton: Effects of density, Fire Safety Journal, Volume 46, Issue 3, 2011, Pages 73–80, http://dx.doi.org/10.1016/j.firesaf.2010.09.001.

  39. H Fang, Frank Behrendt, Experimental investigation of natural smoldering of char granules in a packed bed, Fire Safety Journal, Volume 46, Issue 7, 2011, Pages 406–413, ISSN 0379-7112, http://dx.doi.org/10.1016/j.firesaf.2011.06.007.

  40. T. Kashiwagi, H. Nambu, Global kinetic constants for thermal oxidative degradation of a cellulosic paper, Combustion and Flame, Volume 88, Issues 3–4, March 1992, Pages 345–368, http://dx.doi.org/10.1016/0010-2180(92)90039-R.

  41. F. Rogers and T. Ohlemiller, “Smolder Characteristics of Flexible Polyurethane Foams,” Journal of Fire and Flammability, 11, p. 32 (1980).

    Google Scholar 

  42. C.Y.H. Chao, J.H. Wang, 2001a, Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam, Journal of Fire Science 19, pp. 137–155.

    Article  Google Scholar 

  43. C Belcher, J Yearsley, R Hadden, J McElwain, G Rein, Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years, Proceedings of the National Academy of Sciences 107 (52), pp. 22448–22453, 2010. doi:10.1073/pnas.1011974107.

    Article  Google Scholar 

  44. R Hadden, G Rein, C Belcher, Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat, Proceedings of the Combustion Institute 34, pp. 2547–2553, 2013. doi:10.1016/j.proci.2012.05.060.

    Google Scholar 

  45. M. Tuomisaari, D. Baroudi, and R. Latva, “Extinguishing Smoldering Fires in Silos,” Publication 339, VTT Technical Research Centre of Finland, Espoo, Finland (1998).

    Google Scholar 

  46. G Rein, S Cohen, A Simeoni, Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts, Proceedings of the Combustion Institute 32, pp. 2489–2496, 2009.

    Google Scholar 

  47. A. Stec, T.R Hull, Assessment of the fire toxicity of building insulation materials, Energy and Buildings 43 (2011) 498–506.

    Article  Google Scholar 

  48. J. Quintiere, M. Birky, F. McDonald, and G. Smith, An Analysis of Smoldering Fires in a Closed Compartment and Their Hazard due to Carbon Monoxide, Fire and Materials, 6, p. 99, 1982.

    Article  Google Scholar 

  49. G. Mulholland and T. Ohlemiller, “Aerosol Characterization of a Smoldering Source,” Aerosol Science and Technology, 1, p. 59 (1982).

    Article  Google Scholar 

  50. H. Hotta, Y. Oka, and O. Sugawa, “Interaction Between Hot Layer and Updraft from a Smoldering Source. Part 1. An Experimental Approach,” Fire Science and Technology, 7, p. 17 (1987).

    Article  Google Scholar 

  51. I Bertschi, Yokelson, R.J., Ward, D.E., et al. (2003) Trace gas and particle emissions from fires in large diameter and belowground biomass fuels. Geophysical Research 108 (D13): 8472; doi: 10.1029/2002JD002100.

    Google Scholar 

  52. G. M. Davies, A Gray, G Rein, CJ Legg, Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecology and Management 308, pp. 169–177, 2013. doi:10.1016/j.foreco.2013.07.051

    Google Scholar 

  53. E.R.C. Rabelo, C.A.G. Veras, J.A. Carvalho, E.C. Alvarado, D.V. Sandberg, J.C. Santos, Log smoldering after an Amazonian deforestation fire, Atmospheric Environment 38 (2004) 203–211.

    Article  Google Scholar 

  54. M. Turetsky, B. Benscoter, S. Page, G. Rein, G.R. van der Werf, A. Watts, Global vulnerability of peatlands to fire and carbon loss, (invited progress paper), Nature Geoscience 8 (1), pp. 11–14, 2015. doi:10.1038/NGEO2325.

    Google Scholar 

  55. S.E. Page, Siegert, F., Rieley, J.O., Boehm, H.D.V., Jaya, A. & Limin, S. (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61–65.

    Article  Google Scholar 

  56. W Field, Shen, Nature Geoscience 2, 185–188 (2009) Human amplification of drought-induced biomass burning in Indonesia since 1960, doi:10.1038/ngeo443

    Google Scholar 

  57. X. Huang, G. Rein, Computational Study of Critical Moisture and Depth of Burn in Peat Fires, International Journal of Wildland Fire 24 (in press), (2015). doi:10.1071/WF14178.

    Google Scholar 

  58. W Frandsen, Ignition probability of organic soils, Can. J. For. Res. 27(9): 1471–1477 (1997).

    Article  Google Scholar 

  59. X. Huang, G. Rein, H. Chen, Computational Smoldering Combustion: Predicting the Roles of Moisture and Inert Contents in Peat Wildfires, Proceedings of the Combustion Institute 35, pp. 2673–2681, (2015). doi:10.1016/j.proci.2014.05.048.

    Google Scholar 

  60. RA Hartford, Frandsen W.H. (1992) When it’s hot, it’s hot… or maybe it’s not! (surface flaming may not portend extensive soil heating). International Journal of Wildland Fire 2: 139–44. doi: 10.1071/WF9920139.

    Google Scholar 

  61. G. Rein, N. Cleaver, C. Ashton, P. Pironi, JL. Torero, The Severity of Smouldering Peat Fires and Damage to the Forest Soil, Catena 74, 304–309, 2008

    Google Scholar 

  62. Stracher, Prakash and Sokol, Coal and Peat Fires: A Global Perspective, Elsevier Geoscience, 2010, ISBN 9780444528582

    Google Scholar 

  63. G.B. Stracher, T.P. Taylor, Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe, International Journal of Coal Geology 59 (2004) 7–17.

    Article  Google Scholar 

  64. M.A. Nolter, D.H. Vice, Looking back at the Centralia coal fire: a synopsis of its present status, International Journal of Coal Geology 59 (2004) 99–106.

    Article  Google Scholar 

  65. V. Babrauskas and J. Krasny, “Upholstered Furniture Transition from Smoldering to Flaming,” Journal of Forensic Sciences, Nov., pp. 1029–1031 (1997).

    Google Scholar 

  66. O. Putzeys, A. Bar-Ilan, G. Rein, A.C. Fernandez-Pello, D.L. Urban, 2007, The role of the Secondary Char Oxidation in Smoldering and its Transition to Flaming by Ultrasound Probing, Proceedings of the Combustion Institute 31 (2007) 2669–2676 doi:10.1016/j.proci.2006.08.006.

    Google Scholar 

  67. S.D. Tse, A.C. Fernandez-Pello, K. Miyasaka, Controlling Mechanisms in the Transition from Smoldering to Flaming of Flexible Polyurethane foam, Proceedings of the Combustion Institute 26 (1996) 1505–1513.

    Article  Google Scholar 

  68. TJ. Ohlemiller, 1991. Smoldering Combustion Propagation On Solid Wood. Fire Safety Science 3: 565–574. doi:10.3801/IAFSS.FSS.3-565

    Google Scholar 

  69. TJ. Ohlemiller, “Forced Smolder Propagation and the Transition to Flaming in Cellulosic Insulation,” Combustion and Flame, 81, p. 354 (1990b).

    Google Scholar 

  70. A. Bar-Ilan, Putzeys OM, Rein G, et al., 2005, Transition from forward smoldering to flaming in small polyurethane foam samples, Proceedings of the Combustion Institute, 30 (2) pp. 2295–2302, 2005. doi:10.1016/j.proci.2004.08.233.

    Google Scholar 

Download references

Acknowledgements

I am most grateful to Thomas J. Ohlemiller whose pioneering research and reviews on smoldering combustion provided not only the best sources of knowledge and inspiration for my own research and understanding but also contributed to this chapter in the form of material that I reused from his previous version [7]. This chapter is the culmination of 15 years of work on smoldering combustion that I have conducted at four universities. These are, in chronological order University of Texas at Austin, University of California at Berkeley, University of Edinburgh and Imperial College London. This work would not have been possible without the contributions and encouragements of my mentors, collaborators and PhD students. Of these, I am especially thankful to Carlos Fernandez-Pello, José Torero, Rory Hadden, Claire Belcher, Chris Lautenberger, Matt Davies and Xinyan Huang. A series of institutions have funded this work along the way: Royal Academy of Engineering, Leverhulme Trust, UK Engineering and Physical Science Research Council, IFIC Forensics, Met Office and NASA Space flight Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Rein, G. (2016). Smoldering Combustion. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics