Skip to main content
Log in

Deformation models under intense dynamic loading (Review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper considers currently available models of irreversible deformation processes of materials under dynamic, in particular shock-wave, loading. The models can be divided into three groups: (1) macroscopic (continuum) models—traditional models of continuum mechanics, primarily classical models of elastic-plastic deformation, their various generalizations to the case of dynamic processes and models of viscoelastic relaxation media; (2) microstructural models based on the description of microstructural mechanisms of irreversible deformation (usually, the concept of the kinetics of a dislocation ensemble); (3) atomistic molecular dynamics models and calculations. A special category includes the most promising (from the point of view of the author) multilevel models which combine the advantages of each of these approaches and consider deformation mechanisms of various levels. Examples of calculations using such models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Al’tshuler, “The Use of Shock Waves in High-Pressure Physics,” Usp. Fiz. Nauk 85(2), 199–258 (1965).

    Article  Google Scholar 

  2. Physics of Explosion, Ed. by. L. P. Orlenko (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  3. High-Velocity Shock Phenomena, Ed. by V. N. Nikolaevskii (Mir, Moscow, 1973) [Russian translation].

    Google Scholar 

  4. Computational Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press, New York, 1964).

    Google Scholar 

  5. G. I. Kanel’, S. V. Rzaorenov, A. B. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus, Moscow, 1996) [in Russian].

    Google Scholar 

  6. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Bodies (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  7. L. A. Merzhievsky, “Current Models of Dynamic Deformation and Fracture of Condensed Matter,” Mater. Sci. Forum 767, 101–108 (2014).

    Article  Google Scholar 

  8. M. A. Lavrent’ev, “Shaped Charge and Principles of Its Operation,” Usp. Mat. Nauk 12(4(76)), 41–52 (1957).

    MathSciNet  Google Scholar 

  9. M. A. Lavrent’ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. G. E. Cowan, “Shock Deformation and Limiting Shear Strength of Metals,” Trans. Met. Soc. AIME 233(6), 1120–1130 (1965).

    Google Scholar 

  11. F. H. Harlow, “Numerical Fluid Dynamics,” The Amer. Math. Monthly. Computers and Computing 72(2), 84–91 (1965).

    MathSciNet  Google Scholar 

  12. F. H. Harlow, “The Particle-in-Cell Method for Numerical Solution of Problems in Fluid Dynamics,” in Computational Methods in Fluid Dynamics (Mir, Moscow, 1967), pp. 316–342 [Russian translation].

    Google Scholar 

  13. N. N. Yanenko, N. H. Anuchina, V. E. Petrenko, and Yu I. Shokin, “Methods for Calculating Gas-Dynamic Problems with Large Deformations,” Chisl. Met. Mekh. Sploshn. Sredy 1(1), 40–63 (1970).

    Google Scholar 

  14. N. H. Anuchina, “Methods for Calculating Compressible Fluid Flows with Large Deformations,” Chisl. Met. Mekh. Sploshn. Sredy 1(4), 3–84 (1970).

    Google Scholar 

  15. N. H. Anuchina, “On the Solution of Non-Stationary Problems of Gas Dynamics Using the Particle-in-Cell Method,” in Theoretical Foundations and Designing Numerical Algorithms of Problems in Mathematical Physics, Ed. by K. I. Babenko (Nauka, Moscow, 1979), pp. 235–253 [in Russian].

    Google Scholar 

  16. J. K. Dienes and J. M. Walsh, “Theory of Impact: Some General Principles and the Method of Eulerian Codes,” in High-Velocity Impact Phenomena, Ed. by R. Kinslow (Mir, Moscow, 1973), pp. 49–111 [Russian translation].

    Google Scholar 

  17. T. Renee, “Numerical Simulation of High Velocity Impact Phenomena,” in High-Velocity Impact Phenomena, Ed. by R. Kinslow (Mir, Moscow, 1973), pp. 164–219 [Russian translation].

    Google Scholar 

  18. G. I. Robul, “Application of the Particle-in-Cell Method to the Solution of High-Velocity Impact Problems,” in Numerical Methods in Aerodynamics (Moscow State University, Moscow, 1980), pp. 76–84 [in Russian].

    Google Scholar 

  19. N. A. Zlatin and A. A. Kozhushko, “Hydrodynamic Model Ideas in the Theory of High-Velocity Interaction of Solids and the Limits of Their Applicability,” Zh. Tekh. Fiz. 52(2), 330–334 (1962).

    Google Scholar 

  20. M. L. Wilkins, “Calculation of Elastoplastic Flows,” in B. Alder, S. Fernbach, and M. Retenberg (eds.), Methods of Computational Physics, (Academic Press, New York, 1964), Vol. 3.

    Google Scholar 

  21. S. M. Bakhrach, A. G. Ivanov, N. P. Kovalev, et al., “Strength of Aluminum in Elastic-Plastic Compression in a Shock Wave,” in Detonation. Critical Phenomena. Physicochemical Transformations in Shock Waves (Chernogolovka, 1978), pp. 94–101 [in Russian].

    Google Scholar 

  22. V. M. Fomin and E. M. Khakimov, “Numerical Simulation of Compression and Rarefaction Waves in Metals,” Prikl. Mekh. Tekh. Fiz., No. 5, 114–122 (1979) [J. Appl. Mech. Tech. Phys., No. 5, 619–625 (1989)].

    Google Scholar 

  23. S. A. Khristianovich and E. I. Shemyakin, “On the Dynamic Compressibility of Solid Rock and Metal,” Prikl. Mekh. Tekh. Fiz., No. 3, 9–15 (1964) [J. Appl. Mech. Tech. Phys., No. 3, 9–15 (1964)].

    Google Scholar 

  24. V. Herman and R. J. Lawrence, “Influence of the Choice of the Material Model on the Results of Calculating the Propagation of Stress Waves,” Teor. Osn. Inzh. Raschetov 100(1), 95–107 (1978).

    Google Scholar 

  25. G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” in Proc. of 7th Symp. on Ballistics (Hague, Netherlands, 1983), p. 541–547.

    Google Scholar 

  26. D. J. Steinberg, S. G. Cochran, and M. W. Guinan, “A Constitutive Model for Metals Applicable at High-Strain Rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).

    Article  ADS  Google Scholar 

  27. D. R. Curran, “Nonhydrodynamic Attenuation of Shock Waves in Aluminum,” J. Appl. Phys. 34(9), 2677–2685 (1963).

    Article  ADS  Google Scholar 

  28. G. E. Duvall, “Maxwell-Like Relations in Condensed Materials. Decay of Shock Wavws,” Iran. J. Sci. Technol. 7, 57–69 (1978).

    Google Scholar 

  29. L. A. Merzhievskii and A. D. Resnyanskii, “Selecting a Model to Describe the Attenuation of Shock Waves in Metals,” Fiz. Goreniya Vzryva 19(1), 99–105 (1983) [Combust., Expl., Shock Waves 19 (1), 94–100 (1983)].

    Google Scholar 

  30. L. V. Al’tshuler and B. S. Kruglikov, “Attenuation of Strong Shock Waves in Two-Phase and Heterogeneous Media,” Prikl. Mekh. Tekhn. Fiz. 25(5), 24–29 (1984) [J. Appl. Mech. Tech. Phys. 25 (5) 672–676 (1984)].

    Google Scholar 

  31. V. A. Bychenkov and V. A. Svidinskii, “Incorrectness of the Model of Elastoplastic Flow in the Wilkins Method,” Fiz. Goreniya Vzryva 26(1), 118–122 (1990) [Combust., Expl., ShockWaves 26 (1), 105–109 (1990)].

    Google Scholar 

  32. V. M. Sadovskii and K. S. Svobodin, “Numerical Implementation of a Thermomechanical Model of the Dynamics of an Elastic-Plastic Medium,” Izv. Alt. Gos. Univ. Ser. Mat. Mekh., Upravl., Vychisl. Tekh. Informatika, Fizika 1(81), 179–181 (2014).

    Google Scholar 

  33. D. J. Steinberg and C. M. Lund, “A Constitutive Model for Strain Rates from 10−4 to 106 s−1,” J. Appl. Phys. 65(4), 1528–1533 (1989).

    Article  ADS  Google Scholar 

  34. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics Based Constitutive Relations for Material Dynamics Calculations,” J. Appl. Phys. 61(5), 1816–1825 (1987).

    Article  ADS  Google Scholar 

  35. R. Armstrong and F. Zerilli, “Dislocation Mechanics Based Analysis of Material Dynamics Behavior,” J. Phys. Colloque C3 49, C3-529–C3-534 (1988).

    Google Scholar 

  36. F. J. Zerilli and R. W. Armstrong, “Constitutive Relations for the Plastic Deformation of Metals,” in High-Pressure Science and Technology, 1993, Ed. by S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross (AIP Press, New York, 1994), pp. 989–992.

    Google Scholar 

  37. P. S. Follansbee and U. F. Kocks, “A Constitutive Description of the Deformation of Copper Based on the use of the Mechanical Threshold Stress as an Internal State Variable,” Acta Metall. 36, 82–93 (1988).

    Google Scholar 

  38. B. Banerjee and A. S. Bhawalkar, “An Extended Mechanical Threshold Stress Plasticity Model: Modeling 6061-T6 Aluminum Alloy,” J. Mech. Mater. Struct. 3(3), 391–424 (2008).

    Article  Google Scholar 

  39. D. L. Preston, D. L. Tonks, and D. C. Wallace, “Model of Plastic Deformation for Extreme Loading Conditions,” J. Appl. Phys. 93(1), 211–220 (2003).

    Article  ADS  Google Scholar 

  40. R. Liang and A. S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures,” Int. J. Plasticity 15, 963–980 (1999).

    Article  MATH  Google Scholar 

  41. B. Banerjee, “An Evaluation of Plastic Flow Stress Models for the Simulation of High-Temperature and High-Strain-Rate Deformation of Metals,” Preprint (Univ. of Utah, USA, 2005.).

    Google Scholar 

  42. M. Reiner, “Rheology,” in: Handbuch der Phizik, No. VI: Elastizität und Plastizität (Springer-Verlag, Berlin, 1958).

    Google Scholar 

  43. G. E. Duvall, “Propagation of Plane Shock Waves in a Stress-Relaxing Medium,” in Stress Waves in Anelastic Solids (Int. Union of Theor. Appl. Mech., 1964), pp. 20–32.

    Chapter  Google Scholar 

  44. V. B. Sokolovskii, “Propagation of Elastoviscoplastic Waves in Rods,” Prikl. Mat. Mekh. 12(3), 22–29 (1948).

    Google Scholar 

  45. L. A. Malvern, “Wave Propagation in a Bar of Material Exhibiting a Strain Rate Effect,” in Mechanics, No. 1 (1952), pp. 153–161 [Russian translation].

    Google Scholar 

  46. L. V. Al’ tshuler and B. C. Chekin, “Relaxation Parameters of Metals behind the Front of Shock Waves,” in Detonation. Critical Phenomena. Physicochemical Transformations in Shock Waves (Joint Institute of Chemical Physics, Chernogolovka, 1978), pp. 87–90.

    Google Scholar 

  47. L. V. Al’tshuler and B. C. Chekin, “Rheology ofWave Deformation in Metals,” Fiz. Goreniya Vzryva 19(5), 140–142 (1983) [Combust., Expl., Shock Waves 19 (5), 660–662 (1983)].

    Google Scholar 

  48. V. A. Bychenkov, V. F. Kuropatenko, and L. B. Khardina, “Kinetic Model of Stress Relaxation in Solid and Porous Solids,” Vestn. Chelyab. Univ., Ser. 6: Fiz., No. 1, 14–27 (1997).

    Google Scholar 

  49. B. L. Glushak, O. N. Ignatova, S. S. Nadezhin, and V. A. Raevskii, “Relaxation Model of Shear Strength of Five Metals (Aluminum, Beryllium, Copper, Tantalum, and Uranium),” VANT, Ser. Mat. Model. Fiz. Prots., No. 2, 25–35 (2012).

    Google Scholar 

  50. D. T. Corrl, M. J. Starr, R. Vanderby Jr, and T. M. Best, “A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials,” J. Appl. Mech. 68 (September), 787–790 (2001).

    Article  ADS  Google Scholar 

  51. S. G. Bardenhagen, M. G. Stoutb, and G. T. Gray, “Three-Dimensional, Finite Deformation, Viscoplastic Constitutive Models for Polymeric Materials,” Mech. Mater. 25, 235–253 (1997).

    Article  Google Scholar 

  52. A. S. Khan, O. Lopez-Pamies, and R. Kazmi, “Thermo-Mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers over a Wide Range of Strain Rates and Temperatures,” Int. J. Plasticity 22, 581–601 (2006).

    Article  MATH  Google Scholar 

  53. A. Plaseied and A. Fatemi, “Deformation Response and Constitutive Modeling of Vinyl Ester Polymer Including Strain Rate and Temperature Effects,” J. Mater. Sci. 43, 1191–1199 (2008).

    Article  ADS  Google Scholar 

  54. S. K. Godunov, Elements of Continuum Mechanics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  55. S. K. Godunov, N. S. Kozin, and E. I. Romenskii, “Equation of State of the Elastic Energy of Metals in the case of a Nonspherical Strain Tensor,” Prikl. Mekh. Tekh. Fiz. 15(2), 123–128 (1974) [J. Appl. Mech. Tech. Phys. 15 (2), 246–250 (1974)].

    Google Scholar 

  56. S. K. Godunov and N. S. Kozin, “Shock Structure in a Viscoelastic Medium with a Nonlinear Dependence of the Maxwell Viscosity on the Parameters of the Material,” Prikl. Mekh. Tekh. Fiz. 15(5), 101–108 (1974) [J. Appl. Mech. Tech. Phys. 15 (5), 666–671 (1974)].

    Google Scholar 

  57. S. K. Godunov, A. F. Demchuk, N. S. Kozin, and V. I. Mali, “Interpolation Formulas for Maxwell Viscosity of Some Certain Metals as a Function of Shear Strain Intensity and Temperature, Prikl. Mekh. Tekh. Fiz. 15(4), 114–118 (1974) [J. Appl. Mech. Tech. Phys. 15 (4), 526–529 (1974)].

    Google Scholar 

  58. S. K. Godunov, V. V. Denisenko, N. S. Kozin, and N. K. Kuz’mina, “Use of Relaxation Viscoelastic Model in Calculating Uniaxial Homogeneous Strains and Refining the Interpolation Equations for Maxwellian Viscosity,” Prikl. Mekh. Tekh. Fiz. 16(5), 162–167 (1975) [J. Appl. Mech. Tech. Phys. 16 (5), 811–814 (1975)].

    Google Scholar 

  59. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998; Kluwer Acad. Publ., Dordrecht, 2003).

    MATH  Google Scholar 

  60. S. K. Godunov, “A New Variant of the Thermodynamically Consistent Model of Maxwell Viscosity,” Prikl. Mekh. Tekh. Fiz. 45(6), 3–13 (2004) [J. Appl. Mech. Tech. Phys. 45 (6), 775–783 (2004)].

    MathSciNet  Google Scholar 

  61. E. N. Avrorin, N. N. Anuchina, V. V. Gadzhieva, V. P. Elsukov, B. P. Mordvinov, “Numerical Simulation of the Interaction of Dust Particles of a Comet with a Spacecraft,” Fiz. Goreninya Vzryva 32(2), 117–123 (1996) [Combust., Expl., ShockWaves 32 (2), 219–224 (1996)].

    Google Scholar 

  62. V. L. Indenbom and A. N. Orlov, “Physical Theory of Plasticity and Strength,” Usp. Fiz. Nauk 76(3), 557–591 (1962).

    Article  Google Scholar 

  63. A. M. Kosevich, “Dynamic Theory of Dislocations,” Usp. Fiz. Nauk 84(4), 579–609 (1964).

    Article  Google Scholar 

  64. V. E. Panin, V. A. Likhachev, and Yu. B. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  65. A. I. Olemskoi and I. A. Sklyar, “Evolution of the Defect Structure of a Solid during Plastic Deformation,” Usp. Fiz. Nauk 162(6), 29–79 (1992).

    Article  Google Scholar 

  66. W. G. Johnston and J. J. Gilman, “Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals,” [J. Appl. Phys. 30 (2), 139 (1959)].

  67. auth V. I. Al’shits and V. L. Indenbom, “Dynamic Braking of Dislocations,” Usp. Fiz. Nauk 115(1), 3–39 (1975).

    Article  Google Scholar 

  68. J. J. Gilman, “Microdynamics of Plastic Flow at Constant Stress,” J. Appl. Phys. 36(9), 2772–2777 (1965).

    Article  ADS  Google Scholar 

  69. J. J. Gilman, “Dislocation Mobility in Crystals,” J. Appl. Phys. 36(10), 3195 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  70. P. P. Gillis and J. J. Gilman, “Dynamical Dislocation Theory of Crystal Plasticity. I. The Yield Stress,” J. Appl. Phys. 36(11), 3370–3380 (1965).

    Article  ADS  Google Scholar 

  71. P. P. Gillis and J. J. Gilman, “Dynamical Dislocation Theory of Crystal Plasticity. II. Easy Glide and Strain Hardening,” J. Appl. Phys. 36(11), 3380–3386 (1965).

    Article  ADS  Google Scholar 

  72. J. W. Taylor, “Dislocation Dynamics and Dynamic Yielding,” J. Appl. Phys. 36(10), 3165–3170 (1965).

    Article  Google Scholar 

  73. J. J. Gilman, “Dislocation Dynamics and the Response of Material to Impact,” Appl. Mech. Rev. 21(8), 767–783 (1968).

    ADS  Google Scholar 

  74. S. Kuriyama and K. Kawata, “Propagation of Stress Wave with Plastic Deformation in Metal Obeying the Constitutive Equation of the Johnston-Gilman Type,” J. Appl. Phys. 44(8), 3445–3454 (1973).

    Article  ADS  Google Scholar 

  75. J. M. Kelly and P. P. Gillis, “Continuum Descriptions of Dislocations under Stress Reversals,” J. Appl. Phys. 45(3), 1091–1096 (1974).

    Article  ADS  Google Scholar 

  76. P. M. Nigmatulin and H. H. Kholin, “Model of an elastic-plastic Medium with Dislocation Kinetics of Plastic Deformation,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela 4, 131–136 (1974).

    Google Scholar 

  77. Y. M. Gupta, G. E. Duvall, and G. R. Fowles, “Dislocation Mechanisms for Stress Relaxation in Shocked LiF,” J. Appl. Phys. 46(2), 532–546 (1975).

    Article  ADS  Google Scholar 

  78. S. M. Bakhrakh, A. G. Ivanov, N. P. Kovalev, et al., “Strength of Aluminum under Compression in a Shock,” Prikl. Mekh. Tekh. Fiz. 21(2), 137–143 (1980) [J. Appl. Mech. Tech. Phys. 21 (2), 271–276 (1980)].

    Google Scholar 

  79. G. I. Kanel’, “Model of the Kinetics of Metal Plastic Deformation under Shock-Wave Loading Conditions,” Prikl. Mekh. Tekh. Fiz. 21(2), 105–110 (1982) [J. Appl. Mech. Tech. Phys. 21 (2), 256–260 (1982).]

    Google Scholar 

  80. D. Kuhlmann-Wilsdorf, Dislocation, in Physical Metal Science (Mir, Moscow, 1968), Vol. 3, pp. 9–86 [Russian translation].

    Google Scholar 

  81. Y. M. Gupta, G. E. Duvall, and G. R. Fowles, “Dislocation Mechanisms for Stress Relaxation in Shocked LiF,” J. Appl. Phys. 46, 532–546 (1975).

    Article  ADS  Google Scholar 

  82. M. A. Mogilevskii and O. I. Mynkin, “Effect of Point Defects on One-Dimensional Compression of a Lattice,” Fiz. Goreniya Vzryva 14(5), 159–162 (1978) [Combust., Expl., Shock Waves 14 (5), 680–682 (1978)].

    Google Scholar 

  83. A. A. Bukaemskii and L. A. Merzhievskii, “Analysis of the Applicability of Dislocation Kinetics in Dynamical Plasticity Problems,” in Dynamics of Continuous Media, No. 80 (Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1987), pp. 31–40.

    Google Scholar 

  84. L. A. Merzhievskii, “Three-Dimensional Generalization of the Gilman Elastic-Plastic Model,” in Dynamics of Continuous Media, No. 59 (Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1983), pp. 158–163.

    Google Scholar 

  85. R. W. Werne and J. M. Kelly, “A Dislocation Theory of Isotropic Polycrystalline Plasticity,” Int. J. Eng. Sci. 16(12), 951–965 (1978).

    Article  MATH  Google Scholar 

  86. Y. Estrin, “Dislocation-Density-Related Constitutive Modeling,” in Unified Constitutive Laws of Plastic Deformation, Ed. by A. S. Krausz, K. Krausz (Academic Press, San Diego, 1996), pp. 69–106.

    Chapter  Google Scholar 

  87. R. A. Austin and D. L. McDowell, “A Dislocation-Based Constitutive Model for Viscoplastic Deformation of FCC Metals at Very High Strain Rates,” Int. J. Plasticity 27, 1–24 (2011).

    Article  Google Scholar 

  88. K. R. Rajagopal and A. R. Srinivasa, “On the Inelastic Behavior of Solids-Part I: Twinning,” Int. J. Plasticity 11(6), 653–678 (1995).

    Article  MATH  Google Scholar 

  89. K. R. Rajagopal and A. R. Srinivasa, “On the Inelastic Behavior of Solids-Part II: Energetics Associated with Discontinuous Deformation Twinning,” Int. J. Plasticity 13(1/2), 1–35 (1997).

    Article  MATH  Google Scholar 

  90. N. V. Savel’eva, Yu. V. Bayandin, and O. B. Naimark, “Numerical Simulation of Deformation and Fracture of Metals under Plane Impact Conditions,” Vychisl. Mekh. Sploshn. Sred 5(3), 300–307 (2012).

    Google Scholar 

  91. Yu. V. Bayandin, L. A. Merzhievskii, and O. B. Naimark, “Multiscale Mechanisms of Structural Relaxation and Some Regularities of Formation of Plastic Wave Fronts in Metals,” in Extreme States of Matter. Detonation. Shock Waves, Abstracts of the XV Khariton’s Scientific Readings, March 18–22 2013 (VNIIEF, Sarov, 2013), pp. 187–188.

  92. Yu. V. Bayandin, L. A. Merzhievskii, O. B. Naimark, and N. V. Savel’eva, “Wide-Range Governing Equations of the Behavior of Solids with Defects under Dynamic Action and High-Velocity Impact,” Explosion in a Physical Experiment: Abstracts of All-Russian Conference Dedicated to the 80th Anniversary of Academician V. M. Titov, Novosibirsk, Russia, September 16-20, 2013 (Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2013), pp. 116–118.

    Google Scholar 

  93. D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithms to Applications (Academic Press, San Diego, 1996).

    MATH  Google Scholar 

  94. J. Hutter and D. Marx, Ab Initio Molecular Dynamics: Theory and Implementation, Modern Methods and Algorithms of Quantum Chemistry, Ed. by J. Grotendorst (John von Neumann Institute for Computing, Juelich, 2000). pp. 301–449 (NIC Ser.; Vol. 1).

  95. H.-D. Holtje, B. Sippl, D. Rognan, and T. Folkers, Molecular Modeling: Basic Principles and Applications (Binom, Moscow, 2010) [Russian translation].

    Google Scholar 

  96. D. K. Rapaport, Art of Molecular Dynamics (IKI, Izhevsk, 2012) [in Russain].

    Google Scholar 

  97. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117(1), 1–19 (1995).

    Article  ADS  MATH  Google Scholar 

  98. I. T. Todorov and W. Smith, The DL POLY 4 user Manual. Version 4.02.0 (STFC Daresbury Laboratory, Daresbury, England, 2011).

    Google Scholar 

  99. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshild, E. Villa, Ch. Chipot, R. D. Skeel, L. Kale, K. Schulten, “Scalable Molecular Dynamics with NAMD,” J. Comput. Chem. 26(16), 1781–1802 (2005).

    Article  Google Scholar 

  100. H. J. C. Berendsen, D. van der Spoel, and R. van Duren, “GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation,” Comp. Phys. Comm. 91, 43–56 (1995).

    Article  ADS  Google Scholar 

  101. H. J. Limbach, A. Arnold, D. A. Mann, and C. Holm, “ESPResSo-an Extensible Simulation Package for Research on Soft Matter Systems,” Comp. Phys. Comm. 174(9), 704–727 (2006).

    Article  ADS  Google Scholar 

  102. B. J. Alder and T. E. Wainwright, “Phase Transition for a Hard Sphere System,” J. Chem. Phys. 27, 1208–1209 (1957).

    Article  ADS  Google Scholar 

  103. S. M. Foiles, “Calculation of the Surface Segregation of Ni-Cu Alloys with the use of the Embedded-Atom Method,” Phys. Rev. B 32, 7685–7693 (1985).

    Article  ADS  Google Scholar 

  104. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Phys. Rev. B 33, 7983–7991 (1986).

    Article  ADS  Google Scholar 

  105. A. F. Voter, “Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, and Al,” Los Alamos Unclassified Technical Report No. LA-UR-93-3901 (1993).

    Google Scholar 

  106. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford-New York, 1987).

    MATH  Google Scholar 

  107. K. Kadau, T. C. Germann, and P. S. Lomdahl, “Large-Scale Molecular-Dynamics Simulation of 19 billion Particles,” Int. J. Modern Phys. C 15(1), 193–201 (2004).

    Article  ADS  Google Scholar 

  108. K. Kadau, T. C. Germann, and P. S. Lomdahl, “Molecular Dynamics Comes of Age: 320 billion Atom Simulation on BlueGene/L”, Int. J. Modern Phys. C 17(12), 1755–1761 (2006).

    Article  ADS  Google Scholar 

  109. D. H. Tsai and C. W. Beckett, “Shock Wave Propagation in Cubic Lattices,” J. Geophys. Res. 71(10), 2601–2608 (1966).

    Article  ADS  Google Scholar 

  110. G. E. Duvall, R. Manvi, and S. C. Lowell, “Steady Shock Profile in a One-Dimensional Lattice,” J. Appl. Phys. 40,(9), 3771–3775 (1969).

    Article  ADS  Google Scholar 

  111. R. Manvi and G. E. Duvall, “Shock Waves in a Lattice One-Dimensional Non-Dissipating Lattice,” J. Phys. D: Appl. Phys. 2(10), 1389–1396 (1969).

    Article  ADS  Google Scholar 

  112. V. Yu. Klimenko and A. H. Dremin, “The Structure of the Shock Wave in the Liquid,” Dokl. AN SSSR, 249(4), 840–843 (1979).

    Google Scholar 

  113. V. Yu. Klimenko and A. N. Dremin, “Structure of the Shock Wave Front in a Solid,” Dokl. Akad. Nauk SSSR 251(6), 1379–1381 (1980).

    Google Scholar 

  114. D. H. Tsai and R. A. MacDonald, “Shock Wave Profile in a Crystalline Solid,” J. Phys. C: Solid State Phys. 11, L365–L371 (1978).

    Article  ADS  Google Scholar 

  115. A. Paskin, A. Gohar, and G. J. Dienes, “Simulations of Shock Waves in Solids,” J. Phys. Chem. Solids 39, 1307–1311 (1978).

    Article  ADS  Google Scholar 

  116. B. L. Holian, “Atomistic Computer Simulations of Shock Waves,” Shock Waves, No. 5, 149–157 (1995).

    Google Scholar 

  117. M. A. Mogilevskii, V. V. Efremov, and I. O. Mynkin, “Crystalline Lattice Behavior under Strong One-Dimensional Compression,” Fiz. Goreniya Vzryva 13(5), 750–754 (1977) [Combust., Expl., Shock Waves 13 (5), 637–640 (1977)].

    Google Scholar 

  118. B. L. Holian, “Modeling Shock-Wave Deformation Via Molecular Dynamics,” Phys. Rev. A 37, 2562–2568 (1988).

    Article  ADS  Google Scholar 

  119. B. L. Holian and P. S. Lomdahl, “Plasticity Induced by Shock Waves in Nonequilibrium Molecular-Dynamics Simulations,” Science 280, 2085–2088 (1998).

    Article  ADS  Google Scholar 

  120. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, “Microscopic View of Structural Phase Transitions Induced by Shock Waves,” Science 296, 1681–1684 (2002).

    Article  ADS  Google Scholar 

  121. B. L. Holian, “Molecular Dynamics Comes of Age for Shockwave Research,” Shock Waves 13(6), 489–495 (2004).

    Article  ADS  MATH  Google Scholar 

  122. I. F. Golovnev, E. I. Golovneva, L. A. Merzhievskii, and V. M. Fomin, “Generation of Defects as a Phenomenon of Self-Organization of the Structure under External Loading,” Fiz. Mezomekh. 16(3), 35–43 (2013).

    Google Scholar 

  123. I. F. Golovnev, E. I. Golovneva, and L. A. Merzhievskii, “Modeling the Transformation of the Nanocrystal Structure under Shock Loading,” Izv. Alt. Gos. Univ., Ser. Mat. Mekh., Upravl., Vychisl. Tekh. Informatika, No. 1(81), 40–42 (2014).

    Google Scholar 

  124. I. F. Golovnev, E. I. Golovneva, L. A. Merzhievskii, V. M. Fomin, and V. E. Panin, “Molecular Dynamic Study of the Cluster Structure and Properties of RotationalWaves in Solid Nanostructures,” Fiz. Mezomekh. 17(4), 41–48 (2014).

    Google Scholar 

  125. G. E. Norman and A. V. Yanilkin, “Homogeneous Nucleation of Dislocations,” Fiz. Tverd. Tela 53(8), 1536–1541 (2011).

    Google Scholar 

  126. Y. Qi, A. Strachan, T. Cagin, and W. A. Goddard, III. “Large Scale Atomistic Simulations of Screw Dislocation Structure, Annihilation and Cross-Slip in FCC Ni,” Mater. Sci. Eng. A 309–310, 156–159 (2001).

    Article  Google Scholar 

  127. T. C. Germann, D. Tanguy, B. L. Holian, P. S. Lomdahl, M. Mareschal, and R. Ravelo, “Dislocation Structure Behind a Shock Front in FCC Perfect Crystals: Atomistic Simulation Results,” Metallurg. Mater. Trans. A 35 (september), 2609–2615 (2004).

    Article  Google Scholar 

  128. B. Cao, E. M. Bringa, and M. A. Meyers, “Shock Compression of Monocrystalline Copper: Atomistic Simulations,” Metallurg. Mater. Trans. A 38(11), 2681–2688 (2007).

    Article  ADS  Google Scholar 

  129. V. Dremov, A. Petrovtsev, P. Sapozhnikov, and M. Smirnova, “Molecular Dynamics Simulations of the Initial Stages of Spall in Nanocrystalline Copper,” Phys. Rev. B 74(5), 144110-1–144110-5 (2006).

    ADS  Google Scholar 

  130. L. Soulard, “Molecular Dynamics Study of the Micro-Spallation,” Eur. Phys. J. D 50, 241–251 (2008).

    Article  ADS  Google Scholar 

  131. A. M. Dongare, A. M. Rajendran, B. LaMattina, M. A. Zikry, and D. W. Brenner, “Atomic Scale Studies of Spall Behavior in Nanocrystalline Cu,” J. Appl. Phys. 108(11), 113518-1–113518-10 (2010).

    Article  ADS  Google Scholar 

  132. A. M. Dongarea, B. LaMattina, and A. M. Rajendran, “Atomic Scale Studies of Spall Behavior in Single Crystal Cu,” Procedia Eng., No. 10, 3636–3641 (2011).

    Google Scholar 

  133. C. Zhang, R. K. Kalia, A. Nakano, and P. Vashishta, “Fracture Initiation Mechanisms in α-Alumina under Hypervelocity Impact,” Appl. Phys. Lett. 91(12), 121911-1–121911-3 (2007).

    ADS  Google Scholar 

  134. P. S. Branicioa, R. K. Kaliaa, A. Nakanoa, P. Vashishtaa, F. Shimojoc, and J. P. Rino, “Atomistic Damage Mechanisms During Hypervelocity Projectile Impact on AlN: A Large-Scale Parallel Molecular Dynamics Simulation Study,” J. Mech. Phys. Solids 56, 1955–1988 (2008).

    Article  ADS  Google Scholar 

  135. J. Samela and K. Nordlund, “Classical Molecular Dynamics Simulations of Hypervelocity Nanoparticle Impacts on Amorphous Silica,” Phys. Rev. B 81(5), 054108-1–054108-5 (2010).

    Article  ADS  Google Scholar 

  136. E. Holmstrom, J. Samela, and K. Nordlund, “Atomistic Simulations of Fracture in Silica Glass Through Hypervelocity Impact,” Lett. J. Exploring Frontiers Phys. (EPL) 96, 16005-p1–16005-p5 (2011).

    Google Scholar 

  137. A. M. Krivtsov and N. F. Morozov, “Anomalies of the Mechanical Properties of Nanoscale Objects,” Dokl. Akad. Nauk 381(3), 345–347 (2001).

    Google Scholar 

  138. A. M. Krivtsov and N. V. Krivtsova, “Particle Method and Its Use in Solid Mechanics,” Dal’nevostochn. Mat. Zh. 3(2), 254–276 (2002).

    Google Scholar 

  139. A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  140. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  141. M. A. Meyers, Dynamic Behavior of Materials (John Wiley and Sons, New York, 1994).

    Book  MATH  Google Scholar 

  142. V. G. Malinin and N. A. Malinina, “Structural-Analytical Mezomechanics of Deformable Solids,” Fiz. Mezomekh. 8(5), 31–45 (2005).

    Google Scholar 

  143. M. O. Steinhauser, Computational Multiscale Modeling of Fluids and Solids Theory And Applications (Springer-Verlag, Berlin-Heidelberg, 2008).

    MATH  Google Scholar 

  144. Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, Ed. by R. Pippan and P. Gumbsch (Springer, Wien-New York, 2010).

    Google Scholar 

  145. Multiscale Modeling of Polymer Properties, Ed. by M. Laso and E. A. Perpete (Brussels, 2006).

    Google Scholar 

  146. Multiscale Modeling and Simulation: A SIAM Interdisciplinary J., http://www.siam.org/journals/mms.php.

  147. L. A. Merzhievskii and A. D. Resnyanskii, “Shock-Wave Processes in Metals,” Fiz. Goreniya Vzryva 20(5), 114–122 (1984) [Combust., Expl., Shock Waves 20 (5), 580–587 (1984)].

    Google Scholar 

  148. L. A. Merzhievskii and S. A. Shamonin, “Construction of the Time Dependence of the Relaxation of Tangential Stresses on the State Parameters of a Medium,” Prikl. Mekh, Tekh. Fiz., No. 5, 170–179 (1980) [J. Appl. Mech. Tech. Phys., No. 5, 716–724 (1980)].

    Google Scholar 

  149. L. A. Merzhievsky and A. D. Resnyansky, “The Role of Numerical Simulation in the Study of High-Velocity Impact,” Int. J. Impact Eng. 17(1–6), 559–570 (1995).

    Article  Google Scholar 

  150. L. A. Merzhievskii, “Simulation of the Dynamic Compression of Polycrystalline Al2O3,” Fiz. Goreniya Vzryva 34(6), 85–94 (1998) [Combust., Expl., Shock Waves 34 (6), 679–687 (1998)].

    Google Scholar 

  151. M. S. Voronin, E. I. Kraus, and L. A. Merzhievskii, “Simulation of Shock-Wave Processes in Aluminum using a Small-Parameter Equation of State with a Nonspherical Strain Tensor,” Izv. Alt. Gos. Univ., No. 1/1, 32–35 (2014).

    Google Scholar 

  152. L. A. Merzhiyevsky and A. V. Tyagel’sky, “Dislocation Kinetics of Shock Wave Metal Deformation,” J. Phys., Colloque C3 C3-525–C3-531 (1991).

    Google Scholar 

  153. N. N. Popov, A. G. Ivanov, V. P. Strekin, and V. M. Barinov, “Obtaining Complete Stretching Diagrams of AMg6 and MA18 Alloys at Strain Rates of 10−3 to 103 s−1,” Probl. Prochn., No. 12, 50–54 (1981).

    Google Scholar 

  154. L. A. Merzhievskii and A. D. Resnyanskii, “Deformation and Collapse of Hollow Conical Casing,” Fiz. Goreniya Vzryva 23(2), 102–110 (1987) [Combust., Expl., Shock Waves 23 (2), 212–219 (1987)].

    Google Scholar 

  155. L. A. Merzhievskii and A. D. Resnyanskii, “Numerical Analysis for the Abnormality of Protective Properties of a Thin Shield under Oblique Impact,” Fiz. Goreniya Vzryva 29(6), 81–87 (1993) [Combust., Expl., Shock Waves 29 (6), 744–749 (1993)].

    Google Scholar 

  156. L. A., Merzhievskii and M. S. Voronin, “Modeling of Shock-Wave Deformation of Polymethyl Metacrylate,” Fiz. Goreniya Vzryva 48(2), 113–123 (2012) [Combust., Expl., Shock Waves 48 (2), 226–235 (2012)].

    Google Scholar 

  157. S. A. Bordzilovskii, M. S. Voronin, S. M. Karakhanov, and L. A. Merzhievskii, “Shock Compression Temperature of Polymer Materials,” Dokl. Akad. Nauk 455(6), 646–650 (2014).

    Google Scholar 

  158. V. A. Romanova and P. P. Balokhonov, “Comparative Analysis of the Stress-Strain State at the Mesolevel in Two-Dimensional and Three-Dimensional Polycrystalline Samples,” Fiz. Mezomekh. 12(6), 33–39 (2009).

    Google Scholar 

  159. P. V. Makarov, V. A. Romanova, and P. P. Balokhonov, “Dynamics of Shear Instability of Materials under Shock-Wave Loading,” Khim. Fiz. 20(8), 94–99 (2001).

    Google Scholar 

  160. V. A. Romanova, R. R. Balokhonov, P. V. Makarov, and I. Yu. Smolin, “Numerical Modeling of the Behavior of a Structurally Heterogeneous Relaxing Medium under Dynamic Loading,” Khim. Fiz. 18(11), 114–119 (1999).

    Google Scholar 

  161. V. S. Krasnikov, A. Yu. Kuksin, A. E. Maier, and A. V. Yanilkin, “Plastic Deformation of Aluminum under High-Velocity Loading: A Multiscale Approach,” Fiz. Tverd. Tela 52(7), 1295–1304 (2010).

    Google Scholar 

  162. A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, “Modeling of Plasticity and Fracture of Metals at Shock Loading,” J. Appl. Phys. 113(5), 193508-1–193508-7 (2013).

    ADS  Google Scholar 

  163. A. M. Rajendran, R. Mohan, and A. M. Dongare, “Multiscale Modeling of Cementitious Materials under Shock Loading Conditions: Challenges and Issues,” in Proc. of the Int. Conf. Shock Waves in Condensed Matter (SWCM 2012), Kiev, Ukraine, 5–10 September 2012, pp. 324–328.

  164. R. Valisetty and A. Rajendran, “Multi-Scale Modeling Capable Global Codes,” in Proc. of ICCES’10, Las Vegas, April 29, 2010.

  165. D. S. Ivanov and L. V. Zhigilei, “Combined Atomistic-Continuum Modeling of Short-Pulse Laser Melting and Disintegration of Metal Films,” Phys. Rev. B 68, 064114-1–064114-22 (2003).

    ADS  Google Scholar 

  166. H. M. Zbib and T. D. De la Rubia, “A Multiscale Model of Plasticity,” Int. J. Plasticity 18(9), 1133–1163 (2002).

    Article  MATH  Google Scholar 

  167. G. A. Gazonas, J. W. McCauley, I. G. Batyrev, et al., “Multiscale Modeling of Armor Ceramics: Focus on AlON,” Proc. of the 27th Army Science Conf., Orlando, FL, 29 November 2010, pp. 1–8.

  168. T. Antoun, E. B. Vorobiev, and S. Johnson, “Mesoscale Modeling of the Dynamic Response of Armor Ceramics,” Adv. in Ceramic Armor VIII: Ceram. Eng. Sci. Proc., 3–18 (2012).

    Google Scholar 

  169. M. A. Shehadeha, E. M. Bringa, H. M. Zbib, J. M. McNaney, and B. A. Remington, “Simulation of Shock-Induced Plasticity Including Homogeneous and Heterogeneous Dislocation Nucleation,” Appl. Phys. Lett. 89(11), 171918-1–171918-3 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Merzhievskii.

Additional information

Original Russian Text © L.A. Merzhievskii.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 2, pp. 144–160, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merzhievskii, L.A. Deformation models under intense dynamic loading (Review). Combust Explos Shock Waves 51, 269–283 (2015). https://doi.org/10.1134/S0010508215020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215020100

Keywords

Navigation