Skip to main content
Log in

Analysis of the Effect of Exogenous Nicotinamide on Bioenergetic Processes in the Brain During Acute Hypoxia

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Potential mechanisms for the realization of the neuroprotective action of nicotinamide during acute lethal short-term hypoxia were evaluated based on current knowledge about its effect on metabolic processes. Attention was drawn to the role of mitochondrial dysfunction and excitotoxicity followed by axonal degeneration and apoptosis of neurocytes and neuroglia during the development of an inflammatory response in trauma and cerebral ischemia. A decrease in the level of ATP in the cells during hypoxia affects the generation of the mitochondrial membrane potential, promotes an increase in membrane permeability, the release of NAD from mitochondria, the entry of sodium into the cell, and the development of intracellular edema. Activation of poly (ADP-ribose)-polymerase 1, induced by DNA damage during reoxygenation, reduces the level of NAD in the cell as a substrate for its reaction and causes dysfunction of the respiratory mitochondrial complex. High doses of nicotinamide have neuroprotective properties in traumatic brain injury, ischemia and stroke, as well as in neurodegenerative Alzheimer’s, Parkinson’s and Huntington’s diseases. It is generally accepted that the neuroprotective effect of nicotinamide, firstly, is because, being a substrate for the synthesis of nicotinamide mononucleotide and NAD+, it can maintain and prevent the NAD+ content decrease under conditions of acute hypoxia. Secondly, nicotinamide, being a blocker of poly (ADP-ribose) polymerase 1, can provide the required level of NAD+ in the cell and reduce its use in the reactions with this polymerase. Thirdly, nicotinamide is a substrate for NAD+ synthesis and maintains the NAD+/NADH complex, which is important for the functioning of the antioxidant system of the mitochondrial respiratory chain under conditions of acute hypoxia. It is doubtful that these mechanisms are sufficient to implement the action of nicotinamide for the reason that there was no decrease in the level of NAD in mitochondria during the death of animals under conditions of short-term lethal hypoxia. A variant of the mechanism of nicotinamide action through GABA/benzodiazepine receptors, which causes inhibition of the activation of neurocyte glutamate receptors during acute hypoxia, was considered. In hypoxia, there is an excessive hyperactivation of glutamate receptors and the development of acute cellular hypoxia, which leads to cell death from overexcitation (excitotoxicity). Nicotinamide reduces the death of neurocytes from excitotoxicity by acting on benzodiazepine receptors. GABA agonists prevent the effect of glutamate during excitotoxicity in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Moretti and C. Peinkhofer, Int. J. Mol. Sci. 20, 5797 (2019). https://doi.org/10.3390/ijms20225797

    Article  Google Scholar 

  2. R. A. Fricker, E. L. Green, S. I. Jenkins, and S. M. Griffin, Int. J. Tryptophan Res. 11, 1178646918776658 (2018). https://doi.org/10.1177/1178646918776658

    Article  Google Scholar 

  3. E. S. Hwang and S. B. Song, Biomolecules 10, 687 (2020).https://doi.org/10.3390/biom10050687

    Article  Google Scholar 

  4. J. R. Tribble, A. Otmani, S. Sun, et al., Redox Biol. 43, 101988 (2021). https://doi.org/10.1016/j.redox.2021.101988

    Article  Google Scholar 

  5. T. A. Voronina, Rev. Clin. Pharmacol. Drug Ther. 14, 63 (2016). https://doi.org/10.17816/RCF14163-70

    Article  Google Scholar 

  6. M. E. Watts, R. Pocock, and C. Claudianos, Front. Mol. Neurosci. 11, 216 (2018). https://doi.org/10.3389/fnmol.2018.00216

  7. S. Y. Ng and A. Y. W. Lee, Front. Cell. Neurosci. 13, 528 (2019). https://doi.org/10.3389/fncel.2019.00528

    Article  Google Scholar 

  8. G. Qi, Y. Mi, and F. Yin, Front. Physiol. 10, 1531 (2020). https://doi.org/10.3389/fphys.2019.01531

    Article  Google Scholar 

  9. M. S. Sekhon, P. N. Ainslie, and D. E. Griesdale, Crit. Care 21, 90 (2017). https://doi.org/10.1186/s13054-017-1670-9

    Article  Google Scholar 

  10. K. Shetty, F. Galeffi, and D. A. Turner, Neurobiol. Dis. 62, 469 (2014). https://doi.org/10.1016/j.nbd.2013.10.025

    Article  Google Scholar 

  11. C. Chinopoulos, Exp. Neurol. 327, 113218 (2020). https://doi.org/10.1016/j.expneurol.2020.113218

    Article  Google Scholar 

  12. M. V. Vasin, I. B. Ushakov, and I. V. Bukhtiyarov, Biol. Bull. 45, 73 (2018). https://doi.org/10.1134/S1062359017060115

  13. P. Belenguer, J. M. N. Duarte, P. F. Schuck, and G. C. Ferreira, Neurotoxic. Res. 36, 219 (2019). https://doi.org/10.1007/s12640-019-00061-7

    Article  Google Scholar 

  14. E. Marutani, M. Morita, S. Hirai, et al., Nat. Commun. 12, 3108 (2021). https://doi.org/10.1038/s41467-021-23363-x

    Article  ADS  Google Scholar 

  15. N. Klimova, A. Fearnow, and T. Kristian, Brain Sci. 10, 449 (2020). https://doi.org/10.3390/brainsci10070449

    Article  Google Scholar 

  16. O. P. Mishra, W. Akhter, Q. M. Ashraf, and M. Delivoria-Papadopoulos, Neuroscience 119, 1023 (2003). https://doi.org/10.1016/s0306-4522(03)00166-0

    Article  Google Scholar 

  17. P. Jagtap and C. Szabo, Nat. Rev. Drug Discovery 4, 421 (2005). https://doi.org/10.1038/nrd1718

    Article  Google Scholar 

  18. R. P. Strosznajder, K. Czubowicz, H. Jesko, and J. B. Strosznajder, Mol. Neurobiol. 41, 187 (2010). https://doi.org/10.1007/s12035-010-8124-6

    Article  Google Scholar 

  19. K. Erdélyi, P. Pacher, L. Virag, and C. Szabo, Int. J. Mol. Med. 32, 339 (2013). https://doi.org/10.3892/ijmm.2013.1397

    Article  Google Scholar 

  20. S. Tanuma, A. Sato, T. Oyama, et al., Curr. Protein Pept. Sci. 17, 668 (2016). https://doi.org/10.2174/1389203717666160419150014

    Article  Google Scholar 

  21. W. Ying, Antioxid. Redox Signal. 10, 179 (2008). https://doi.org/10.1089/ars.2007.1672

    Article  Google Scholar 

  22. T. Neira-Pena, E. Rojas-Mancilla, V. Munoz-Vio, et al., Neurotoxic. Res. 27, 453 (2015). https://doi.org/10.1007/s12640-015-9517-0

    Article  Google Scholar 

  23. B. M. Emerling, F. Weinberg, and C. Snyder. Free Radic. Biol. Med. 46, 1386 (2009).

    Article  Google Scholar 

  24. J. M. Marti, A. Garcia-Diaz, and D. Delgado-Bellido, Redox Biol. 41, 101885 (2021). https://doi.org/10.1016/j.redox.2021.101885

  25. E. Dengler, Int. J. Mol. Sci. 21 (7), 2428 (2020). https://doi.org/10.3390/ijms21072428

    Article  Google Scholar 

  26. R. C. Rabinovitch, B. Samborska, B. Faubert, et al. Cell Rep. 21, 1 (2017). https://doi.org/10.1016/j.celrep.2017.09.026

  27. C. Cantó, Z. Gerhart-Hines, J. N. Feige, et al., Nature 458 (7241), 1056 (2009). https://doi.org/10.1038/nature07813

    Article  ADS  Google Scholar 

  28. J. Brandauer, S. G. Vienberg, M. A. Andersen, et al. J. Physiol. 591, 5207 (2013). https://doi.org/10.1113/jphysiol.2013.259515

  29. A. Y. Sun and D. S. Cheng, Zhongguo Yaoli Xuebao 19, 104 (1998).

    Google Scholar 

  30. M. V. Vasin, T. V. Ryasina, and Yu. N. Chernov, Tsitologiya 41, 812 (1999).

    Google Scholar 

  31. T. V. Ryasina, M. V. Vasin, L. D. Smirnov, et al., Usp. Gerontol., No. 6, 67 (2001).

  32. J. Yang, L. K. Klaidman, A. Nalbandian, et al., Neurosci. Lett. 333, 91 (2002). https://doi.org/10.1016/s0304-3940(02)01005-4

    Article  Google Scholar 

  33. J. Yang, L. K. Klaidman, M. L. Chang, et al., Pharmacol., Biochem. Behav. 73, 901 (2002). https://doi.org/10.1016/s0091-3057(02)00939-5

    Article  Google Scholar 

  34. M. L. Chang, J. Yang, S. Kem, et al., Neurosci. Lett. 322, 137 (2002). https://doi.org/10.1016/s0304-3940(01)02520-4

    Article  Google Scholar 

  35. L. Klaidman, M. Morales, S. Kem, et al., J. Pharmacol. 69, 150 (2003). https://doi.org/10.1159/000072668

    Article  Google Scholar 

  36. M. R. Hoane, S. L. Akstulewicz, and J. J. Toppen, Neurotrauma 20, 1189 (2003). https://doi.org/10.1089/089771503770802871

    Article  Google Scholar 

  37. M. R. Hoane, J. L. Pierce, M. A. Holland, and G. D. Anderson., Neuroscience 154, 861 (2008). https://doi.org/10.1016/j.neuroscience.2008.04.044

    Article  Google Scholar 

  38. M. R. Hoane, J. L. Pierce, N. A. Kaufman, and J. E. Beare, Oxid. Med. Cell Longevity 1, 46 (2008). https://doi.org/10.4161/oxim.1.1.6694

    Article  Google Scholar 

  39. A. M. Goffus, G. D. Anderson, and M. R. Hoane, Oxid. Med. Cellul. Longevity 3, 145 (2010). https://doi.org/10.4161/oxim.3.2.11315

    Article  Google Scholar 

  40. C. Vonder Haar, G. D. Anderson, and M. R. Hoane, Behav. Brain Res. 224, 311 (2011). https://doi.org/10.1016/j.bbr.2011.06.009

    Article  Google Scholar 

  41. J. H. Park, A. Long, K. Owens, and T. Kristian, Neurobiol. Dis. 95, 102 (2016). https://doi.org/10.1016/j.nbd.2016.07.018

    Article  Google Scholar 

  42. C. C. Wei, Y. Y. Kong, G. Q. Li, et al., Sci. Rep. 7, 717 (2017). https://doi.org/10.1038/s41598-017-00851-z

    Article  ADS  Google Scholar 

  43. N. Klimova, A. Fearnow, A. Long, and T. Kristian, Exp. Neurol. 325, 113144 (2020). https://doi.org/10.1016/j.expneurol.2019.113144

  44. J. Zhang, Y. Hong, W. Cao, et al., Front. Mol. Neurosci. 12, 108 (2019). https://doi.org/10.3389/nmol.2019.00108

  45. Y. F. Lai, L. Wang, and W. Y Liu, Eur. Rev. Med. Pharmacol. Sci. 23, 1797 (2019). https://doi.org/10.26355/eurrev_201902_17143

    Article  Google Scholar 

  46. K. Maiese, Curr. Neurovasc. Res. 17, 765 (2020). https://doi.org/10.2174/1567202617999201111195232

    Article  Google Scholar 

  47. N. Klimova, A. Long, and T. Kristian, J. Neurosci. Res. 97, 975 (2019). https://doi.org/10.1002/jnr.24397

    Article  Google Scholar 

  48. Yu. N. Chernov, M. V. Vasin, and I. B. Ushakov, Eksp. Klin. Farmakol. 84, 32 (2021). https://doi.org/10.30906/0869-2092-2021-84-3-8-10

    Article  Google Scholar 

  49. D. Belov Kirdajova, J. Kriska, J. Tureckova, and M. Anderova, Front. Cell Neurosci. 14, 51, (2020). https://doi.org/10.3389/fncel.2020.00051

  50. D. W. Choi, Front. Neurosci. 14, 579953 (2020). https://doi.org/10.3389/fnins.2020.579953

    Article  Google Scholar 

  51. C. Chen, X. Zhou, J. He, et al., Oxid. Med. Cell Longevity 2019, 4028394 (2019). https://doi.org/10.1155/2019/4028394

  52. C. Vinnakota, K. Govindpani, W. P. Tate, et al., Int. J. Mol. Sci. 21, 3284 (2020). https://doi.org/10.3390/ijms21093284

    Article  Google Scholar 

  53. H. Song, S. M. Mylvaganam, J. Wang, et al., Front. Cell Neurosci. 12, 278, (2018). https://doi.org/10.3389/fncel.2018.00278

  54. H. Mohler, P. Polc, R. Cumin, et al., Nature 278, 563 (1979).

    Article  ADS  Google Scholar 

  55. J. Prousky, J. Orthomol. Med. 19, 104 (2004).

    Google Scholar 

  56. M. Slomka, E. Zieminska, E. Salinska, and W. Lazarewicz, Folia Neuropathol. 46, 69 (2008).

    Google Scholar 

  57. D. Mayor and M. Tymianski, Neuropharmacology 134 (Pt B), 178 (2018)https://doi.org/10.1016/j.neuropharm.2017.11.050

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vasin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: ROS, reactive oxygen species; PARP-1, poly (ADP-ribose) polymerase 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasin, M.V., Ilyin, L.A. & Ushakov, I.B. Analysis of the Effect of Exogenous Nicotinamide on Bioenergetic Processes in the Brain During Acute Hypoxia. BIOPHYSICS 67, 637–641 (2022). https://doi.org/10.1134/S0006350922040224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922040224

Keywords:

Navigation