Skip to main content
Log in

Pharmacological HIF1 Inhibition Eliminates Downregulation of the Pentose Phosphate Pathway and Prevents Neuronal Apoptosis in Rat Hippocampus Caused by Severe Hypoxia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy.

HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

G6PD:

Glucose-6-phosphate dehydrogenase

HIF1:

Hypoxia-inducible factor-1

MHH:

Mild hypobaric hypoxia

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

PPP:

Pentose phosphate pathway

SH:

Severe hypobaric hypoxia

References

  • Akerboom T, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–381

    CAS  PubMed  Google Scholar 

  • Ban H, Uto Y, Nakamura H (2011) Hypoxia-inducible factor inhibitors: a survey of recent patented compounds (2004-2010). Expert Opin Ther Pat 21:131–146

    CAS  PubMed  Google Scholar 

  • Barteczek P, Li L, Ernst A, Böhler L, Marti H, Kunze R (2017) Neuronal HIF-1α and HIF-2α deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke. J Cereb Blood Flow Metab 37:291–306

    CAS  PubMed  Google Scholar 

  • Bartlett G (1959) Colorimetric assay methods for free and phosphorylated glyceric acids. J Biol Chem 234:449–458

    CAS  PubMed  Google Scholar 

  • Ben-Yoseph O, Boxer P, Ross B (1996) Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J Neurochem 66:2329–2337

    CAS  PubMed  Google Scholar 

  • Boulton A, Baker G (1986) Subcellular fractionation, general neurochemical techniques (Neuromethods), pp 19–67

  • Chavez J, Agani F, Pichiule P, LaManna J (2000) Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937–1942

    CAS  PubMed  Google Scholar 

  • Chen D, Li M, Luo J, Gu W (2003) Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278:13595–13598

    CAS  PubMed  Google Scholar 

  • Chen C, Hu Q, Yan J, Yang X, Shi X, Lei J, Chen L, Huang H, Han J, Zhang J, Zhou C (2009) Early inhibition of HIF-1alpha with small interfering RNA reduces ischemic-reperfused brain injury in rats. Neurobiol Dis 33:509–517

    CAS  PubMed  Google Scholar 

  • Chen R, Lai U, Zhu L, Singh A, Ahmed M, Forsyth N (2018) Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 6:132. https://doi.org/10.3389/fcell.2018.00132

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Sandalova T, Lindqvist Y, Arnér E (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008

    CAS  PubMed  Google Scholar 

  • Dengler V, Galbraith M, Espinosa J (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49:1–15

    CAS  PubMed  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266

    CAS  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez S, Almeida A, Bolaños J (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11

    CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Slaoane S (1957) Simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gruneberg D, Montellano F, Plaschke K, Li L, Marti H, Kunze R (2016) Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Exp Neurol 286:93–106

    CAS  PubMed  Google Scholar 

  • Guglielmotto M, Aragno M, Autelli R, Giliberto L, Novo E, Colombatto S, Danni O, Parola M, Smith M, Perry G, Tamagno E, Tabaton M (2009) The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. J Neurochem 108:1045–1056

    CAS  PubMed  Google Scholar 

  • Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang B, Liu K, Shi H (2008) Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem 105:1849–1860

    CAS  PubMed  Google Scholar 

  • Kilkenny C, Browne W, Cuthill I, Emerson M, Altman D (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Tchernyshyov I, Semenza G, Dang C (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    PubMed  Google Scholar 

  • Kislin M, Tulkova E, Samoilov M (2009) Changes in lipid peroxidation in the hippocampus and neocortex after severe hypobaric hypoxia. Neurochem J 3:184–190

    Google Scholar 

  • Kodama T, Shimizu N, Yoshikawa N, Makino Y, Ouchida R, Okamoto K, Hisada T, Nakamura H, Morimoto C, Tanaka H (2003) Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J Biol Chem 278:33384–33391

    CAS  PubMed  Google Scholar 

  • Kumar R, Bukowski M, Wider J, Reynolds C, Calo L, Lepore B, Tousignant R, Jones M, Przyklenk K, Sanderson T (2016) Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci 76:68–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhou Z, Sun M, Cao L, Chen J, Qin Y, Gu J, Han F, Sheng R, Wu J, Ding Y, Qin Z (2017) Reduced nicotinamide adenine dinucleotide phosphate, a pentose phosphate pathway product, might be a novel drug candidate for ischemic stroke. Stroke 47:187–195

    Google Scholar 

  • Lukyanova L, Kirova Y (2015) Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci 9:320. https://doi.org/10.3389/fnins.2015.00320

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma M, Wang J, Dhandapani K, Brann D (2018) Deletion of NADPH oxidase 4 reduces severity of traumatic brain injury. Free Radic Biol Med 117:66–75

    CAS  PubMed  Google Scholar 

  • Magalhães J, Ascensão A, Soares J, Ferreira R, Neuparth M, Marques F, Jose A (2005) Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle Duarte. J Appl Physiol 99:1247–1253

    PubMed  Google Scholar 

  • Maiti P, Singh S, Sharma A, Muthuraju S, Banerjee P, Ilavazhagan G (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 49:709–716

    CAS  PubMed  Google Scholar 

  • Meijer T, Kaanders J, Span P, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18:5585–5594

    CAS  PubMed  Google Scholar 

  • Molina F, Del Moral M, Peinado M, Rus A (2017) Angiogenesis is VEGF-independent in the aged striatum of male rats exposed to acute hypoxia. Biogerontology 18:759–768. https://doi.org/10.1007/s10522-017-9709-5

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin E, Go A, Arnett D, Blaha M, Cushman M, Das S, de Ferranti S, Després J, Fullerton H, Howard V, Huffman M, Isasi C, Jiménez M, Judd S, Kissela B, Lichtman J, Lisabeth L, Liu S, Mackey R, Magid D, McGuire D, Mohler E, Moy C, Muntner P, Mussolino M, Nasir K, Neumar R, Nichol G, Palaniappan L, Pandey D, Reeves M, Rodriguez C, Rosamond W, Sorlie P, Stein J, Towfighi A, Turan T, Virani S, Woo D, Yeh R, Turner M (2016) Heart disease and stroke statistics-2016 update: a report from the American heart association, American heart association statistics committee, Stroke Statistics Subcommittee. Circulation 133:e38–e360

    PubMed  Google Scholar 

  • Nagel S, Papadakis M, Chen R, Hoyte L, Brooks K, Gallichan D, Sibson N, Pugh C, Buchan A (2010) Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 31:132–143. https://doi.org/10.1038/jcbfm.2010.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nita D, Nita V, Spulber S, Moldovan M, Popa D, Zagrean A, Zagrean L (2001) Oxidative damage following cerebral ischemia depends on reperfusion—a biochemical study in rat. J Cell Mol Med 5:163–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi C, Borgel S, Carter J, Gehrs B, Raffeld M, Kinders R, Parchment R, Anver M, Shoemaker R, Melillo G (2009) Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 8:1867–1877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rybnikova E, Sitnik N, Gluschenko T, Tjulkova E, Samoilov M (2006) The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res 1089:195–202

    CAS  PubMed  Google Scholar 

  • Rybnikova E, Glushchenko T, Churilova A, Pivina S, Samoilov M (2011) Expression of glucocorticoid and mineralocorticoid receptors in hippocampus of rats exposed to various modes of hypobaric hypoxia: putative role in hypoxic preconditioning. Brain Res 1381:66–77

    CAS  PubMed  Google Scholar 

  • Rybnikova E, Vorobyev M, Pivina S, Samoilov M (2012) Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia. Neurosci Lett 513:100–105

    CAS  PubMed  Google Scholar 

  • Samoilov M, Sidorova M, Glushchenko T (2015) The pattern of the expression of hypoxia-inducible factor (HIF-1α) in the neocortex and hippocampus of rats after the presentation of different modes of hypobaric hypoxia. Neurochem J 9:299–305

    CAS  Google Scholar 

  • Sanderson T, Reynolds C, Kumar R, Przyklenk K, Hüttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47:9–23

    CAS  PubMed  Google Scholar 

  • Semenza G (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    CAS  PubMed  Google Scholar 

  • Semenza G (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    CAS  PubMed  Google Scholar 

  • Sheldon R, Lee C, Jiang X, Knox R, Ferriero D (2014) Hypoxic preconditioning protection is eliminated in HIF-1α knockout mice subjected to neonatal hypoxia-ischemia. Pediatr Res 76:46–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiq A, Ayoub I, Chavez J, Aminova L, Shah S, LaManna J, Patton S, Connor J, Cherny R, Volitakis I, Bush A, Langsetmo I, Seeley T, Gunzler V, Ratan R (2005) Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 280:41732–41743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speer R, Karuppagounder S, Basso M, Sleiman S, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim S, Ratan R (2013) Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: from ferroptosis to stroke. Free Radic Biol Med 62:26–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Chan P (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607

    CAS  PubMed  Google Scholar 

  • Sun S, Hu F, Wu J, Zhang S (2017a) Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol 11:577–585

    CAS  PubMed  Google Scholar 

  • Sun Y, Chen X, Zhang X, Shen X, Wang M, Wang X, Liu W, Liu C, Liu J, Liu W, Jin X (2017b) β2-adrenergic receptor-mediated hif-1α upregulation mediates blood brain barrier damage in acute cerebral ischemia. Front Mol Neurosci 10:257. https://doi.org/10.3389/fnmol.2017.00257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Yeoh K, Lee M, Eriksson T, Kessler B, Kramer H, Edelmann M, Willam C, Pugh C, Schofield C, Ratcliffe P (2011) Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors. J Biol Chem 286:13041–13051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulusu N, Sahilli M, Avci A, Canbolat O, Ozansoy G, Ari N, Bali M, Stefek M, Stolc S, Gajdosik A, Karasu C (2003) Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E. Neurochem Res 28:815–823

    CAS  PubMed  Google Scholar 

  • Van Essen H, Verdaasdonk M, Elshof S, de Weger R, van Diest P (2010) Alcohol based tissue fixation as an alternative for formaldehyde: influence on immunohistochemistry. J Clin Pathol 63:1090–1094

    PubMed  Google Scholar 

  • Van Liere EJ, Stickney JC (1963) Hypoxia. The University of Chicago Press, Chicago

    Google Scholar 

  • Vetrovoy O, Rybnikova E, Glushchenko T, Samoilov M (2015) Effects of hypoxic postconditioning on the expression of antiapoptotic protein bcl-2 and neurotrophin bdnf in hippocampal field CA1 in rats subjected to severe hypoxia. Neurosci Behav Physiol 45:367–370

    Google Scholar 

  • Vetrovoy O, Rybnikova E, Samoilov M (2017a) Cerebral mechanisms of hypoxic/ischemic postconditioning. Biochemistry (Mosc) 82:392–400

    CAS  Google Scholar 

  • Vetrovoy O, Tulkova E, Sarieva K, Kotryahova E, Zenko M, Rybnikova E (2017b) Neuroprotective effect of hypobaric hypoxic postconditioning is accompanied by DNA protection and lipid peroxidation changes in rat hippocampus. Neurosci Lett 639:49–52

    CAS  PubMed  Google Scholar 

  • Vetrovoy O, Sarieva K, Galkina O, Eschenko N, Lyanguzov A, Gluschenko T, Tyulkova E, Rybnikova E (2019) Neuroprotective mechanism of hypoxic post-conditioning involves HIF1-associated regulation of the pentose phosphate pathway in rat brain. Neurochem Res 44:1425–1436

    CAS  PubMed  Google Scholar 

  • Zera K, Zastre J (2017) Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes. PLoS One 12:e0186707. https://doi.org/10.1371/journal.pone.0186707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Instrumental analyses were performed at the Research park of Saint Petersburg State University, Research Centre for Environmental Safety and Resource Centre for Molecular and Cell Technologies. The work has been supported by Russian Foundation for Basic Research (RFBR) grant no. 19-015-00336 and Russian Program of State Academies GP-14 (section 65).

Author information

Authors and Affiliations

Authors

Contributions

Oleg Vetrovoy was responsible for the experimental design, performed the experiments, and wrote the paper.

Kseniia Sarieva participated in the experiments, contributed to the experimental design and data analysis.

Ekaterina Tyulkova, Ekaterina Lomert, and Peter Nimiritsky contributed to the experiments.

Andrey Lyanguzov performed statistical analysis of the data.

Olga Galkina, Natalia Eschenko, and Elena Rybnikova contributed to the implementation of the study, data analysis, and preparation of the paper.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oleg Vetrovoy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrovoy, O., Sarieva, K., Lomert, E. et al. Pharmacological HIF1 Inhibition Eliminates Downregulation of the Pentose Phosphate Pathway and Prevents Neuronal Apoptosis in Rat Hippocampus Caused by Severe Hypoxia. J Mol Neurosci 70, 635–646 (2020). https://doi.org/10.1007/s12031-019-01469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01469-8

Keywords

Navigation